Supplementary Materials

Supplementary Material for:

Intestinal Inhibition of the Na+/H+ Exchanger 3 Prevents Cardiorenal Damage in Rats and Inhibits Na+ Uptake in Humans

Andrew G. Spencer, Eric D. Labonte, David P. Rosenbaum, Craig F. Plato, Christopher W. Carreras, Michael R. Leadbetter, Kenji Kozuka, Jill Kohler, Samantha Koo-McCoy, Limin He, Noah Bell, Jocelyn Tabora, Kristin M. Joly, Marc Navre, Jeffrey W. Jacobs, Dominique Charmot*

*Corresponding author. E-mail: dcharmot@ardelyx.com

Published 12 March 2014, Sci. Transl. Med. 6, 227ra36 (2014)
DOI: 10.1126/scitranslmed.3007790

This PDF file includes:

  • Fig. S1. Summary of mass balance study of 14C-tenapanor.
  • Fig. S2. Effect of tenapanor on fecal and urinary sodium in rats on a very low sodium diet, and dose-dependent effect of tenapanor on stool form in rats.
  • Fig. S3. Measurements of serum bicarbonate and chloride, urine pH and urinary calcium, and stool form in humans after 7-day repeated, twice-daily dosing of placebo and 15 to 60 mg of tenapanor.
  • Fig. S4. Measurements of serum bicarbonate and chloride, urine pH, and urinary calcium in humans after 7-day repeated, once-daily dosing of placebo and 3 to 100 mg of tenapanor.
  • Fig. S5. Effect of tenapanor, or tenapanor and enalapril, on serum sodium, potassium, chloride, uric acid, glucose, and bicarbonate in NPX rats.
  • Table S1. Potency of tenapanor activity against NHE1, NHE2, NHE3, NaPiIIb, TGR5, ASBT, and Pit-1.
  • Table S2. PK parameters of tenapanor in rats, dogs, and humans.
  • Table S3. MDCK and PAMPA permeability data of tenapanor.
  • Table S4. Radiolabeled ADME and QWBA study design.
  • Table S5. QWBA data for 14C-tenapanor in Long-Evans rats.
  • Table S6. QWBA data for 14C-tenapanor in Sprague-Dawley rats.

[Download PDF]