ALZHEIMER’S DISEASE

The Uppsala APP deletion causes early onset autosomal dominant Alzheimer’s disease by altering APP processing and increasing amyloid β fibril formation

María Pagnon de la Vega1, Vilmantas Giedraitis1, Wojciech Michno2,3, Lena Kilander1, Görkan Güner1, Mara Zielinski1, Malin Löwenmark1, RoseMarie Brundin1, Torsten Danfors5, Linda Söderberg1, Irina Alafuzoff8, Lars N.G. Nilsson9, Anna Erlandsson1, Dieter Willbold5,10,11, Stephan A. Müller6, Gunnar F. Schröder5,12, Jörg Hanrieder2,13, Stefan F. Lichtenenthal4,14, Lars Lannfelt1, Dag Sehl11, Martin Ingelsson12†

Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer’s disease (AD) by increasing generation or altering conformation of amyloid β (Aβ). Here, we describe the Uppsala APP mutation (E690–695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) Aβ42 and only slightly pathological amyloid–positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing β-secretase cleavage and affecting α-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated Aβ, AβUpp1–42, accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.

INTRODUCTION

Alzheimer’s disease (AD) is neuropathologically characterized by a progressive deposition of amyloid β (Aβ) in parenchyma and blood vessels of the cerebrum (1). Upon sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases, Aβ peptides of 38 to 43 amino acids are generated. If instead α-secretase cleavage occurs, then no Aβ is formed [reviewed in (2)].

Increased generation of the more amyloidogenic Aβ42 is seen for several of the APP mutations positioned in vicinity of the γ-secretase cleavage site (3–14), whereas the Swedish mutation close to the β-secretase cleavage site results in increased production of both Aβ2 and Aβ40, as demonstrated in plasma and fibroblasts from mutation carriers (15–17). Pathogenic APP mutations within the Aβ sequence have been described to result in various disease phenotypes. Patients with the Dutch (E693Q) and Italian (E693K) mutations display amyloid accumulation in cerebral blood vessel walls and intracerebral hemorrhage (18, 19), whereas carriers of the Flemish (A692G) and Iowa (D694N) mutations suffer from both intracerebral hemorrhage and progressive dementia (20, 21). The Arctic mutation (E693G) leads to an increased formation of protofibrils (22) and other large Aβ oligomers with particularly neurotoxic properties (23). Clinical examinations and neuropathological analyses confirmed that carriers of the Arctic mutation have an AD phenotype (24), although their brains almost only display diffuse parenchymal Aβ deposits (24–26). The only protective APP variant described to date, the Icelandic mutation (A673T), has been shown to decrease β-secretase cleavage resulting in reduced Aβ production (27) and aggregation (28, 29).

For the only identified disease-causing APP deletion (E693Δ), resulting in a recessive form of familial AD, an increased intraneuronal presence of toxic Aβ oligomers was suggested as an underlying pathogenic feature. A decreased inhibition of both β- and γ-secretase, with increased enzymatic activities and relative resistance to degradation of mutant Aβ by neprilysin and insulin-degrading enzyme, has been proposed as other effects of this deletion (30).

Here, we report a pathogenic APP deletion (690–695Δ) that causes a dominantly inherited form of early onset dementia in three mutation carriers of a family originating from the city of Uppsala, Sweden. Clinical and neuropathological examinations are compatible with AD, and experimental studies indicate that the phenotype is caused by pathological alterations of the β- and α-secretase cleavage of APP, which result in increased Aβ production in combination with a very rapid aggregation of the longer Aβ mutant (AβUpp1–42Δ19–24) into unique polymorphic structures.

1Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden. 2Department of Psychiatry and Neurochemistry, University of Gothenburg, 43180 Gothenburg, Sweden. 3Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK. 4German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany. 5Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany. 6Department of Surgical Sciences, Radiology, Uppsala University, 75185 Uppsala, Sweden. 7BioArctic AB, 11251 Stockholm, Sweden. 8Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, 75185 Uppsala, Sweden. 9Department of Pharmacology, University of Oslo and Oslo University Hospital, 0316 Oslo, Norway. 10Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. 11Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia. 12Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. 13Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK. 14Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany. 1†These authors contributed equally to this work.
RESULTS
Epidemiological and clinical features of the Uppsala APP mutation family

The Uppsala APP mutation was detected in two siblings and their cousin, who were all referred to the Memory Disorder Unit, Uppsala University Hospital (for pedigree, see Fig. 1A). The ages of symptom onset were 43 years (sibling 1), 40 years (sibling 2), and 41 years (cousin). All three patients had a manifest cognitive impairment and scored 20 to 22 points on the Mini-Mental State Examination (MMSE) at the time of referral, with word finding difficulties, dyscalculia, apraxia, and visuospatial/executive impairment as major symptoms. Sibling 1 developed myoclonus and had a rapid disease progression with severe anxiety and behavioral disturbances. Death occurred 6 years after onset, at the age of 49. At the initial neuropsychological evaluation, sibling 2 had normal scores on episodic memory tests but featured severe dyscalculia and problems with the clock drawing test. At the 4-year follow-up examination, this patient had become increasingly affected by apathy and mutism. The cousin of the two siblings displayed impaired episodic memory, language, and executive functions as dominant symptoms.

One parent of the two siblings had been referred for assessment more than 20 years earlier after having refused to see a physician for several years. This patient had symptom onset at about 47 years of age, and the diagnosis of AD was supported by a computerized tomography (CT) scan, showing cortical and central atrophy at the age of 54. Death occurred at the age of 60. One of the parents of the cousin had onset of symptoms at about 45 years of age and was subsequently also diagnosed with AD. This patient became aggressive and spent several years at a geropsychiatric ward before death occurred about 15 years later. In addition, one of the siblings’ grandparents developed dementia with onset at about 40 years of age and died at the age of 51 (Fig. 1A).

All three cases underwent lumbar puncture and subsequent cerebrospinal fluid (CSF) analyses. CSF concentrations of Aβ42 were within the normal range of non-AD controls, whereas concentrations of total tau (t-tau) and phospho-tau (p-tau) were pathologically elevated (table S1).

Brain imaging

The two siblings and their cousin underwent CT brain examinations at the time of diagnosis. The scan of sibling 1, who was in a more advanced disease stage at the initial visit, showed medial temporal lobe atrophy (MTA) grade 2 together with a moderate frontoparietal lobe atrophy. Sibling 2 and his cousin had a moderate global cortical and central atrophy, whereas the temporal lobes were well preserved (MTA grades 0 to 1) (Fig. 1B). Moreover, the siblings and their cousin underwent fluorodeoxyglucose positron emission tomography [18F]FDG-PET, which showed a decreased uptake mainly...
in the temporal and parietal lobes (Fig. 1, C and D). Two of them also underwent amyloid-PET using Pittsburgh compound B ([11C]PIB), which demonstrated a pathological pattern but only with a slightly increased accumulation of [11C]PIB in cortical areas (Fig. 1, E and F).

Genetic analyses reveal the Uppsala APP mutation

In the three affected cases (two siblings and their cousin), we identified an 18–base pair deletion in exon 17, which leads to the loss of six amino acids (690–695) within Aβ. It should be noted that this deletion spans over the region that is affected by previously identified intra-Aβ mutations (Fig. 1G). In addition, we have analyzed more than 500 DNA samples from Swedish patients with AD, older unaffected family members, and from older healthy control subjects, all of which were negative for this genetic alteration. Furthermore, the two siblings were analyzed for the apolipoprotein E gene (APOE) and found to be APOE ε3 homozygotes (table S1).

The Uppsala APP mutation leads to mainly AβUpp1–42,19–24 pathology

One brain of an Uppsala APP mutation carrier (sibling 1) has come to autopsy. The weight of the brain was 1480 g, and the right hemisphere was subjected to routine analyses. On gross inspection, dilated ventricles were evident. Microscopically, a pronounced gliosis was seen in limbic and in neocortical areas (Fig. 2A and fig. S1). Moreover, there was a widespread tau pathology, corresponding to Braak stage VI, as visualized with the AT8 anti-tau antibody (Fig. 2, B and C).

Aβ plaques were abundant and widespread, corresponding to Thal stage 5. Tissue sections from occipital (Fig. 2), temporal, and parietal (fig. S1) neocortices were analyzed by immunohistochemistry with a panel of different monoclonal anti-Aβ antibodies and by thioflavin S (ThS) staining. Antibodies directed toward the Aβ C terminus with a panel of different monoclonal anti-Aβ antibodies and by thioflavin S (ThS) staining. Antibodies directed toward the Aβ C terminus revealed abundant Aβ42 staining, whereas Aβ40 staining was much less intense in all cortical areas investigated (Fig. 2, D to G, and fig. S1). With the 6F/3D antibody, binding to Aβ amino acids 8 to 17 (25), abundant pathology was observed in several neocortical regions (Fig. 2H), and a similar pattern could be observed with ThS (Fig. 2I).

Furthermore, brain tissues from fresh-frozen frontal, temporal, and occipital neocortex as well as cerebellum of the mutation carrier, 11 sporadic AD (sAD), and 9 non-neurological control brains (table S2) were homogenized and sequentially extracted with tris-buffered saline (TBS) and formic acid (FA) for analysis with MSD electrochemiluminescence-based Aβ immunoassay (Meso Scale Discovery) and enzyme-linked immunosorbent assay (ELISA). Compared to sAD and control samples, the Uppsala APP mutation brain displayed lower concentrations of Aβ40, whereas concentrations of Aβ42 were elevated, especially in the FA fraction (Fig. 3A), which corresponds to insoluble Aβ deposits, but also in the TBS fraction, representing more soluble Aβ, including aggregates (Fig. 3B). In contrast to elevated Aβ42 in the FA fraction of all investigated brain regions, concentrations of TBS soluble oligomers were lower in the Uppsala APP mutation brain compared to sAD, when analyzed with an ELISA that detects soluble Aβ aggregates of all sizes (Fig. 3C). Moreover, when analyzed with an ELISA that preferentially recognizes larger oligomers and protofibrils (31), the Uppsala APP mutation brain displayed low concentrations, comparable to those in the controls, whereas the amounts of such Aβ species in sAD brains were elevated (Fig. 3D).

The composition of amyloid plaques from temporal neocortex was further analyzed by luminescent conjugated oligothiophene (LCO) staining and matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Similar to those that were positive for ThS, plaques stained with the LCOs q-FTAA and h-FTAA (Fig. 3E) showed a distinct core surrounded by a diffuse halo of fibrillar Aβ (Fig. 3F). The MALDI-IMS analyses suggested that the plaques mainly consist of AβUpp1–40, either in its full-length version or as N-terminally truncated peptides, which mainly start at positions 3 (pyroglutamate), 4, 5, or 8. The contribution by AβUpp1–40 to the formation of amyloid plaques in the Uppsala APP mutation brain seemed to be minor (Fig. 3, G and H). These results, as well as the peptide sequence identity, were confirmed by immunoprecipitation (IP) and MS analyses of pooled material from 50 individually laser-microdissected plaques, identified with LCO staining (table S3).

To investigate the contribution of AβUpp and Aβwt in CSF from Uppsala APP mutation cases and thereby understand why Aβ1–42

Fig. 2. Pronounced Aβ and tau pathology in the Uppsala APP mutation carrier brain. Immunohistochemistry of tissue sections from the Uppsala APP mutation brain, against GFAP (gliarial fibrillary acidic protein) (anti-GFAP) (A), tau (AT8) (B and C), Aβ42 (anti-Aβ42) (D and E), Aβ40 (anti-Aβ40) (F and G), and total Aβ (6F/3D) (H). Staining of amyloid plaques with ThS (I). (A) Temporal cortex; (B to I) occipital cortex. Squares in (B), (D), and (F): Regions displayed in the higher-magnification images (C, E, and G). Arrow in (C) points to a tangle; arrowhead points to a dystrophic neurite.
CSF concentrations were within the normal range in these patients, we performed IP-MS analyses using 6E10 (Aβ amino acids 5 to 10) and antibodies targeting the Aβ40 and Aβ42 C terminus for IP. CSF from the three mutation carriers (sibling 1, sibling 2, and cousin) was analyzed and compared to CSF from 11 sAD cases and 10 healthy control subjects (Fig. 4A) (demographic information; table S1). Mutation carriers displayed higher CSF amounts of Aβ1–40, Aβ1–42, and total Aβ (sum of all detected Aβ variants) as compared to sAD cases and control subjects (Fig. 4B). The amounts of Aβwt1–40 in CSF, produced from their nonmutated APP allele, were lower in patients with the Uppsala APP mutation than in sAD cases and control subjects, whereas Aβwt1–42 was not different in patients with the mutations compared to controls (Fig. 4B). The amounts of Aβ1–42 measurements performed with the routine immunoassay and IP-MS (fig. S2A) showed that whereas values from control and sAD samples correlated well between the two methods, those from the three Uppsala APP mutation cases did not (fig. S2B). Ion spectra from AβUpp1–42Δ19–24 and AβUpp1–40Δ19–24 are shown in fig. S3.

The Uppsala APP mutation alters APP processing, resulting in increased Aβ production

To study the potential effects of the Uppsala APP mutation on APP processing, conditioned media of human embryonic kidney (HEK) 293 cells transfected with APP carrying the Uppsala mutation (APP_Upp) or wild-type APP (APP_wt) were analyzed with MSD immunoassays to determine sAPPα and sAPPβ concentrations of soluble APP fragments resulting from a- and β-cleavage, as well as in Aβ40 and Aβ42. Only background amounts of sAPPα were detected in media from the APP_Upp culture, whereas high concentrations were found in media...
Next, the same cell media were analyzed with two different Aβ sandwich ELISAs: Aβ N-terminal–specific antibody and Aβx-40 (using 6E10 for detection). Because the MSD and Western blot–based results suggested an additional cleavage site in APPUpp resulting in mAb1C3-positive sAPP fragment, we expected that the C-terminal side of this cleavage site would be detectable with the Aβx-40 ELISA (Fig. 5F). Cell media from the APPUpp culture showed a significantly higher (P < 0.0016) Aβx-40/Aβ1-40 ratio compared to APPwt-transfected cells, indicating that, in addition to Aβ, an extra N-truncated Aβ fragment was present in the APPUpp cell media (Fig. 5G).

To confirm that the reduction of sAPPα in APPUpp cell media was α-secretase cleavage specific, we performed Western blot with the same constructs as in the other cell culture–based experiments. When probing with the sAPPα-specific antibody 14D6, sAPPα was found to be reduced (P < 0.0001) in APPUpp compared to APPwt cell media. Moreover, upon treatment with the metalloprotease inhibitor GI254023X that blocks a disintegrin and metalloprotease 10 (ADAM10), the major α-secretase (32) (Fig. 5, H and I), sAPPα was decreased in media from both cell cultures. In addition, and in line with the MSD results (Fig. 5B), sAPPβ was increased (P < 0.01) in media from APPUpp-transfected cells (Fig. 5, H and I). Moreover, we performed Western blot on the cell lysates using a
γ-secretase inhibitor [difluorophenylacetyl-alanyl-phenylglycine-t-buty1-ester (DAPT)] to detect C-terminal fragments (CTFs) resulting from α- and β-secretase cleavage of APP and found a slight reduction in CTFα and a more prominent increase in 6E10-positive CTFs (fig. S5).

In addition to the Western blot analyses, we applied MS to investigate the altered APP processing. With respect to APP-transfected cells, subjected to IP with 6E10, anti-Aβ40, and anti-Aβ42, the most prominent forms of Aβ were Aβ1–40 and Aβ17–40 in media from APPwt-transfected cells (Fig. 6A), whereas AβUpp1–40/319–24 and AβUpp5–40/319–24 were the dominating species in media from APPUpp-transfected cells (Fig. 6B), suggesting a new major cleavage of APPUpp between amino acids 4 and 5 in the Aβ sequence.

Furthermore, affinity-purified sAPP was digested with the protease LysN, which cleaves proteins at the N-terminal side of lysines, followed by liquid chromatography–tandem MS analyses of peptides that are specific for the cleavage sites of α-secretase and β-secretase. Two different peptides in the N-terminal part of APP, upstream of the α-secretase and β-secretase cleavage sites, respectively, could then be found at similar concentrations in APPUpp and APPwt cell media (Fig. 6, C and D). Analysis of the α-secretase cleavage site–specific peptide KMDAEFRHDSGYEVHHQK (595–612 in wt hAPP695) showed that cleavage at this site was not significantly reduced (P < 0.05) in APPUpp compared to APPwt media (Fig. 6E).

In contrast, the intensity of the β-secretase cleavage site–specific peptide KTEEISEVKM(ox) (587–596 in wt hAPP695) was strongly increased cleavage by beta-site APP cleaving enzyme 1 (BACE1), the major β-secretase (Fig. 6F). Moreover, the semi-specific peptide (N terminus specific for LysN, C terminus unspecific) KMDAEFRHDSGYEVHHQK (595–612 in wt hAPP695) was identified. It ends at amino acid 10 of the Aβ sequence (same as the β-secretase cleavage site) and was found to have a much higher intensity in media from APPUpp.

Fig. 5. The Uppsala APP mutation alters APP processing

Electrochemiluminescence immunoassay (MSD) analyses of sAPPα (A), sAPPβ (B), and Aβ40 and Aβ42 (C) in conditioned media from HEK293 cells transfected with APPUpp as compared to APPwt (n = 3, N = 1). Western blot of APPUpp conditioned media, with the sAPPα antibody 283 (C terminus), 6E10 (Aβ5–10), and mAb1C3 (Aβ3–8) (n = 3, N = 3) (D). Results from (D) quantified as a ratio of sAPPα (detected with 6E10, 283, or 1C3) to total sAPP (detected with 22C11) in cell medium over total APP in cell lysate (E). Schematic image indicating β- and α-secretase cleavage sites of APPwt and APPUpp, with antibody binding epitopes indicated (F). Ratio of Aβ1–40 and Aβ1–10 in APPwt and APPUpp medium quantified by ELISA (n = 3, N = 3) (G). Western blot analyses of media and lysates from HEK293 cells transiently transfected with APPwt or APPUpp, with or without the ADAM10-prefering inhibitor GI254023X (GI) using specific antibodies for Aβ and APP epitopes indicated (H). Ratio of Aβ1–40 and Aβ1–40 in APPwt media (detected with 6E10, 2B3, or 1C3) or total sAPP in cell medium over total APP in cell lysate (H). Statistical significance was determined by one-way ANOVA (A to C) [for (A) and (B), P < 0.0001; for (C), Aβ40 and Aβ42, P = 0.0003] followed by Tukey’s post hoc test, two-tailed unpaired t test (P < 0.001, ***P < 0.0001, **P < 0.001, ***P < 0.001, ****P < 0.0001). All results were normalized to total APP. DMSO, dimethyl sulfoxide.
LysN, C terminus unspecific), peptide 5, KMDAEFRHDSGY (595–606)

Chromatogram of the semi-specific peptides (N terminus specific for

KMDAEFRHDSGYEVHHQK (595–612)

...times between runs. Chromatogram of the

αAPPwt

APPwt

β-cleavage site–specific peptide 4,

KTEEISEVKM(ox) (587–596)

cleavage site) (Fig. 3).

Chromatogram of the

E

β-cleavage site–specific peptide 3,

KMDAEFRHDSGY (587–600)

G

C-terminal site–specific peptide 3, KMDAEFRHDSGYEVHHQK (595–612) (Fig. 6I). MS sequencing results are shown in fig. S6.

Fig. 6. The Uppsala APP mutation increases β-secretase cleavage and alters α-secretase cleavage. MS spectra of the APPwt-transfected (A) and APPUpp-transfected (B) HEK293 cells that showed the most prominent peptides present in cell media from cells transfected with either APPUpp or APPwt. The absence of Upp1–40 is indicated by the red arrow (B). Extracted ion chromatograms of different peptides of APP (blue, APPwt; red, APPUpp). Chromatogram of the N-terminal APP peptides, peptide 1, KYLETPGDENEHAHFQ (302–317 in wt hAPP695) (C) and peptide 2, KAVIQHFAQE (354–362 in wt hAPP695) (D). Shifts in retention times between APPwt and APPUpp were within the normal range of shifts between runs. Chromatogram of the α-secretase cleavage sites—specific peptide 3, KMDAEFRHDSGYEVHHQK (595–612 in wt hAPP695, containing one missed LysN cleavage site) (E). Chromatogram of the β-secretase cleavage site–specific peptide 4, KTEEISEVKM(ox) (587–596 in wt hAPP695, also containing one missed LysN cleavage site) (F). Chromatogram of the semi-specific peptides (N terminus specific for LysN, C terminus unspecific), peptide 5, KMDAEFRHDSGY (587–606 in wt hAPP695) (G) and peptide 6, KTEEISEVKMDAEF (587–600 in wt hAPP695) (H). I) Cleavage sites of α- and β-secretase are indicated for the sequences of APPwt and APPUpp. Thick arrows indicate increased and thin arrows indicate decreased cleavage of the two APP sequences

AβUpp1–42Δ19–24 is prone to form amyloid fibrils in vitro and displays a unique structural polymorphism

To investigate the aggregation behavior of AβUpp, we performed in vitro aggregation experiments. Monomeric Aβ was extracted from solubilized lyophilized synthetic AβUpp1–42Δ19–24, Aβwt1–42, and AβArc1–42 peptides with high-performance liquid chromatography–size exclusion chromatography (SEC) and analyzed with three different methods upon aggregation at 37°C without shaking.

First, we analyzed fibril formation with the thioflavin T assay (ThT), which revealed that AβUpp1–42Δ19–24 fibrillizes very rapidly, reaching half of its maximum ThT signal after 0.93 hours, compared to 8.3 hours for Aβwt1–42 and 1.3 hours for AβArc1–42Δ22G. AβUpp1–42Δ19–24 thus aggregated significantly faster than Aβwt1–42 (P < 0.0001) and with a similar rate as AβArc1–42Δ22G, albeit apparently with a somewhat less prominent lag phase (Fig. 7A). The AβUpp1–40Δ19–24 peptide did not display any fibril formation and was therefore not included in the analysis. Next, we applied an ELISA that selectively measures soluble Aβ oligomers/prototibrils (33) and found that the concentration of such Aβ species decreased for AβUpp1–42Δ19–24 whereas they increased with time for Aβwt1–42 and AβArc1–42 (Fig. 7B). In the same samples (isolated at 1 and 8 hours), the distribution of prototibrillar and monomeric Aβ was qualitatively visualized with SEC. Before SEC analysis, fibrillar Aβ was pelleted with centrifugation, and hence, fibril formation was also indirectly monitored as a decreased size of the prototibril and monomer peaks. Overall, SEC largely confirmed the results from the ThT assay and ELISA, with a prominent decrease of monomeric AβUpp1–42Δ19–24 over time (from 1 to 8 hours). In addition, similar to the ThT assay and ELISA data and in contrast to Aβwt1–42 and AβArc1–42, no increase in the prototibril peak could be observed over time for AβUpp1–42Δ19–24 (Fig. 7C).

To further investigate the structural polymorphism of Aβ formed as a result of the Uppsala APP mutation, AβUpp1–42Δ19–24 was fibrillized under a low-pH condition that has previously been shown to yield slow-growing and well-ordered Aβ1–42 fibrils (34). Electron microscopy (EM) imaging of negatively stained fibrils revealed the presence of long and well-ordered fibrils with at least four different polymorphs (Fig. 7D). For higher-resolution examination of these fibrils, cryo-EM experiments were performed. For the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments. The density allowed for the two most dominant polymorphs, we obtained three-dimensional density reconstructions at resolutions of 5.7 and 5.1 Å for polymorphs 1 and 2, respectively (Fig. 7D). Both fibrils were found to consist of two symmetric protofilaments.
same protofilament interface in the fibril core (fig. S7). Polymorph 2 has a vague similarity to the previously described Aβwt1–42 structure (34), where the prominent salt bridge between the N-terminal Asp1 and Lys26 residues could also be present in AβUpps1–42, AβArc1–42, and Aβwt1–42 samples, as measured by ELISA (B) and SEC (C). Negative stain EM image of AβUpps1–42 fibrils formed at low pH resulted in long, well-ordered fibrils (D) (left). Cryo-EM reconstructions (D) (middle and right). For ThT, four replicates of each peptide were aggregating simultaneously (n = 4) for each of the three experiments (N = 3). Error bars represent SD of the replicates, and black and dashed lines represent curves fitted to the ThT data points. For ELISA, from the same monomeric fraction used for ThT, two replicates (n = 2) for each experiment (N = 3). SEC was performed one time (N = 1). PF, protofibril.

DISCUSSION

We here describe the Uppsala APP mutation, an APP deletion causing a dominantly inherited form of AD. This pathogenic deletion, resulting in a loss of six amino acids in the mid-region of Aβ, was found in three affected family members and not in 500 other subjects, including older nonaffected family members, older healthy controls, and SAD cases.

Most of the AD-causing APP mutations lead to symptom onset between 40 and 65 years (38), although cases with an even earlier onset have been reported for some mutations (7, 9, 12). The clinical effects of the Uppsala APP mutation are severe, insofar that mutation carriers develop symptoms already in their early forties and have an aggressive disease course. The clinical picture involves severe dementia, characterized by widespread parietotemporal lobe involvement, leading to death from dementia-related illnesses within 5 to 11 years. These clinical characteristics are thus similar to AD in general and to what has been reported for other familial disease variants.

In terms of structural brain imaging, the CT scans displayed the expected symmetrical pattern of global cortical atrophy and mild MTA. As for PET, investigations with the [18F]FDG ligand showed a disease-characteristic hypometabolism of posterior parietal and temporal lobes, whereas analysis with [11C]PIB, which selectively binds to amyloid plaques, only showed a slightly positive pattern. Analyses of postmortem brain tissue from one of the affected cases resulted in several important observations. First, the pathological picture was compatible with AD, including abundant deposition of extracellular Aβ-positive plaques and intracellular tau-positive tangles and neurites accompanied by pronounced gliosis.

The regional distribution of Aβ aggregates was extended from neocortex to cerebellum, corresponding to Thal phase 5, and p-tau pathology was observed from locus coeruleus to neocortex, corresponding to Braak stage VI. Second, upon a more detailed examination of tissues from different cortical areas, it became evident that the Aβ pathology of the Uppsala APP mutation carriers mainly consists of Aβ42. This observation was corroborated by MALDI-IMS analyses of Aβ plaques from the temporal cortex, which in addition suggested that almost only mutated Aβ was present, either in its full-length version or as N-terminally truncated forms. Third, Aβ plaques were positive for staining with the amyloid dye Ths, which is structurally similar to PIB, raising the question why patients were only slightly [11C]PIB-positive plaques, only showed a slightly positive pattern. Analysis of postmortem brain tissue from one of the affected cases resulted in several important observations. First, the pathological picture was compatible with AD, including abundant deposition of extracellular Aβ-positive plaques and intracellular tau-positive tangles and neurites accompanied by pronounced gliosis.

The regional distribution of Aβ aggregates was extended from neocortex to cerebellum, corresponding to Thal phase 5, and p-tau pathology was observed from locus coeruleus to neocortex, corresponding to Braak stage VI. Second, upon a more detailed examination of tissues from different cortical areas, it became evident that the Aβ pathology of the Uppsala APP mutation carriers mainly consists of Aβ42. This observation was corroborated by MALDI-IMS analyses of Aβ plaques from the temporal cortex, which in addition suggested that almost only mutated Aβ was present, either in its full-length version or as N-terminally truncated forms. Third, Aβ plaques were positive for staining with the amyloid dye Ths, which is structurally similar to PIB, raising the question why patients were only slightly [11C]PIB-positive plaques, despite high total Aβ concentrations in the postmortem brain tissue analysis. The PET results are displayed as a standard uptake value ratio (SUVR), which is a ratio of the PET signal in the region of interest to the signal from a reference region, in this case the cerebellum. Hence, a low SUVR could have been explained by a high reference region signal, but this interpretation could be ruled out as Ths staining of cerebellum in the patient with Uppsala APP revealed a low amyloid burden in this brain region. Although amyloid plaques generally reach the plateau phase rather early in the disease course, we cannot rule out that the time between the scan and the postmortem analyses could explain these differences in patients with Uppsala APP. Subtle changes in the fibrillar structure of AβUpps1–42 could be another potential explanation for the low PIB retention signal seen for the patients with Uppsala APP.
Biochemical analyses of AD CSF biomarkers revealed the expected pathological increase of t-tau and p-tau, whereas, unlike other APP mutation cases (39), concentrations of Aβ42 were normal for all three Uppsala APP mutation carriers investigated. The IP-MS–based CSF analyses suggest an explanation for this unexpected finding, as they demonstrated that the amounts of AβUpp1–40,19–24 and, especially, AβUpp1–42,19–24 produced by the mutated allele were substantially higher than Aβwt1–40 and Aβwt1–42 generated from the nonmutated allele. Thus, an increased generation of Aβ from the allele with the Uppsala APP mutation seems to result in higher total CSF concentrations of Aβ1–40 and Aβ1–42 as compared to both sAD cases and controls. Comparison of the IP-MS and routine ELISA-based CSF Aβ data revealed a good correlation for all control and sAD samples, whereas for the Uppsala APP mutation carriers, IP-MS–generated CSF Aβ concentrations were relatively higher. The ELISA measurement displayed normal concentrations of Aβ1–42 in CSF from Uppsala APP mutation cases, which is higher than in sAD cases, but in the same range as control subjects. We speculate that this discrepancy may be related to a difference in conformation between AβUpp19–24 and Aβwt. Whereas ELISA detection of Aβ1–42 relies on the simultaneous binding of the assay antibodies to the C and N terminus of Aβ, the IP-MS method is only dependent on one antibody–Aβ interaction at a time, which could facilitate its detection of AβUpp19–24. We therefore believe that the IP-MS results in this case better reflect the true amounts of Aβ1–42 in CSF, which, in turn, suggests a substantially increased production of Aβ in the brain of Uppsala APP mutation carriers.

We next performed cell-based experiments to seek a molecular explanation for the difference in Aβ production from the mutant and wild-type alleles in the mutation carriers. The MSD and Western blot–based analyses of cell media from APP-transfected cells, together with analyses of CTF fragments with the 2C11 (C-terminal APP) and 6E10 (Aβ5–10) antibodies on the same cell model, demonstrated an increased production of sAPPβ accompanied by a higher concentration of Aβ in medium from cells transfected with APPUpp. The MS analyses of the same cell culture media confirmed an increased β-secretase cleavage, thereby providing an explanation to the elevated amounts of AβUpp19–24 observed with IP-MS in CSF from the Uppsala APP mutation carriers. The detection of an increase in both Aβ and sAPPβ by different methods confirms that the increased CSF AβUpp19–24 detected by IP-MS was not a method-related artifact.

Because the N-terminal start of the Uppsala APP mutation is located only two amino acids from the α-secretase cleavage site, and this enzyme is dependent on the distance from the membrane and not exclusively on a determined cleavage site (40–42), we reasoned that the mutation may also affect α-secretase activity and/or the location of the cleavage site itself. In line with this, we could demonstrate that α-secretase–related APP processing is indeed altered by the Uppsala APP mutation. MSD and Western blot analyses of conditioned media from HEK293 cells transfected with APPUpp suggested a strongly decreased α-secretase cleavage at position Aβ16–17. This was further strengthened by analysis of corresponding CTF fragments with the C-terminal APP (2C11) antibody in the same cell model. Moreover, with enzyme inhibition experiments, we could demonstrate that the decreased cleavage indeed was specific to α-secretase.

Furthermore, Western blot analysis revealed an additional APP fragment that was faintly detected with mAb1C3 (which binds to Aβ amino acids 3 to 8), but not with 6E10 (which binds to Aβ amino acids 5 to 10) or 2B3 (which binds to an epitope near the C-terminal end of APPo) antibodies, suggesting possible alternative cleavage sites.

To identify the alternative cleavage sites, IP-MS analyses of sAPP fragments secreted in media from APPUpp- or APPwt-transfected cells were performed and indicated that the mutation results in a new major cleavage site located 12 amino acids N-terminally of the conventional α-secretase cleavage site, between amino acids 4 and 5 of the Aβ sequence. This site was also detected with MS analysis of LysN-digested peptides from media of APPUpp-transfected cells. The resulting peptide, AβUpp5–40,19–24, was present in media from APPUpp cells to a similar extent as Aβwt17–40 (also known as p3) was in media from APPwt cells. Furthermore, AβUpp5–40,19–24 was identified by IP-MS in CSF from Uppsala APP mutation carriers, albeit less abundantly than in media from APPUpp-transfected HEK293 cells, a cell type that usually has a much higher activity of α-secretase than β-secretase as we could observe with the MSD analyses of the cell culture media. In addition, AβUpp5–42,19–24, likely resulting from the same enzymatic cleavage, was detected by MALDI-IMS in the brain, suggesting that it coaggregates with AβUpp1–42,19–24 into plaques.

Whereas AβUpp5–40,19–24 seems to be consistently present as a result of the Uppsala APP mutation, it is at this point unclear whether it is generated as a result of cleavage at an alternative α-secretase site or by some other protease. Several additional proteolytic cleavages of APP may occur within or just outside of the Aβ sequence, for example, by BACE2 or proteases referred to as δ- and η-secretases or by alternative β-secretases, such as meprin-b (43–51). We speculate, however, that AβUpp5–40,19–24 could be an alternative version of p3 resulting from a shifted α-secretase cleavage, which coaggregates with AβUpp1–42,19–24 to form plaques and thereby contribute to the pathogenesis in mutation carriers. As additional support of its potential pathogenic significance, Aβwt5–42 has, in a previous study, been found to have similar toxicity as Aβwt1–42 but with an even higher propensity to aggregate (52). Furthermore, two previous studies have shown that treatment with a BACE1 inhibitor resulted in increased concentrations of Aβ5–42 (53, 54), indicating that the cleavage of APPwt between Aβ4 and Aβ5 is indeed independent of β-secretase. Irrespective of the nature of the secretases involved, our data, together with these previous observations, thus suggest that both the β-secretase and the new cleavage site N-terminally of the α-secretase cleavage site are altered by APPUpp.

An additional major cleavage site between amino acids 10 and 11 of the Aβ sequence was found to be increased in APPUpp compared to APPwt cell media. Accordingly, Aβ11–40,19–24 and Aβ11–42,19–24 were identified in CSF from patients with the Uppsala APP mutation and in APPUpp cell media. Moreover, Aβ11–42,19–24 was abundant in the plaques of the mutation carrier brain, likely as a consequence of increased cleavage at this site. This additional cleavage occurs at the β′ cleavage site, and it is, at this point, uncertain whether the observed activity with the Uppsala APP mutation is due to a general increase of BACE1 activity that affects both β-secretase sites in APPUpp or whether it represents an additional shifted α-secretase cleavage site resulting from the deletion of six amino acids in the APPUpp sequence.

Thus, the Uppsala APP mutation seems to abolish the non–amyloid-generating pathway of APP processing, which may further contribute to the pathogenesis in affected individuals. However, to confirm the responsible protease(s) of the additional cleavage sites, further experimental studies using different protease inhibitors are needed.
To investigate the inherent properties of Aβ, we next performed in vitro studies that examined the aggregation behavior of the mutated peptides. Upon analyzing results generated by the ThT assay, it became evident that AβUpp1–42Δ19–24 was forming bona fide fibrils very rapidly. With respect to oligomers or protofibrils, both Aβwt1–42 and AβArc1–42 formed such intermediated sized soluble aggregates that increased with time, which is in line with what has been proposed as the pathogenic mechanism for the Arctic mutation (22). However, AβUpp1–42Δ19–24 oligomer/protofibril concentrations decreased over time, probably because the in vitro fibril formation was so rapid and complete that intermediate species were immediately fibrillized. This theory may be supported by the finding that, compared to sAD cases, TBS extracts of the Uppsala APP mutation carrier brain displayed lower concentrations of oligomers/protofibrils, especially larger variants, which may suggest that AβUpp11–24 aggregates into smaller-sized oligomers that rapidly fibrillize and deposit into plaques. Despite this, oligomers/protofibrils of Aβ are likely to be of relevance for the pathogenesis of AD caused by the Uppsala APP mutation.

Structural analyses of two different polymorphs of the Uppsala APP mutation revealed that they share some features of previously published Aβ1–42 fibril structures but generally differ from all Aβ fibril structures that have been described to date. Further studies will be required to determine the effects of these structural polymorphs with respect to how they interact with amyloid dyes, such as PIB, and how they may contribute to the formation of toxic Aβ oligomers. Such oligomer formation could be driven by secondary nucleation, which has previously been reported to depend on the structure of the fibrillar surface where such a process is believed to occur (55).

To the best of our knowledge, the only previously described intra-Aβ APP deletion is the Osaka mutation (30). Whereas this mutation has been reported to have a recessive character, the Uppsala APP mutation is inherited in a dominant manner. Overall, AβUpp1–42Δ19–24 seems to be forming amyloid fibrils much more aggressively than the corresponding form of AβOsaka. For example, an Osaka APP mutation knock-in mouse model was reported to display brain pathology only when the inserted gene was homozgyuously expressed (56). In the Osaka APP mutation mouse model, a reduced α-secretase cleavage could be observed, similar to what we report here for the Uppsala APP mutation (57).

Taken together, we have identified an APP mutation, which is an intra-Aβ deletion causinig dominantly inherited AD. The loss of six amino acids results in an increase of the Aβ promoting β-secretase cleavage, leading to an elevated generation of AβUpp11–24 with a concomitant suppression of the regular α-secretase cleavage. Thus, the non-amyloid-generating pathway is seemingly abolished with the mutation. Instead, two other Aβ species, AβUpp5–40/42Δ19–24 and AβUpp11–40/42Δ19–24 are formed, possibly as a result of a shift of the α-secretase cleavage site, and these may contribute to disease development in mutation carriers. The facts that Aβwt5–42 has previously been reported as pathogenic and that AβUpp5–42Δ19–24 was found to be present in plaques from the investigated Uppsala APP mutation brain support that, at least, this species may be contributing to the pathogenesis. Moreover, the mutation also renders unique properties to AβUpp1–42Δ19–24, which accelerates its fibrillization into distinctive polymorphs and promotes plaque deposition in the affected brains. Thus, the combined effect of three putative pathogenic mechanisms by the Uppsala APP mutation may well explain why affected carriers develop an aggressive form of disease with a very early age at symptom onset.

Although the study has clearly identified that the Uppsala APP mutation causes AD by a combination of three mechanisms, all related to APP, it is based on a limited patient material from Uppsala APP mutation carriers (CSF, n = 3 and brain, n = 1), which limits the statistical power of certain analyses. Therefore, the exact quantitative impact of the mutation on the development of Aβ and downstream pathologies is difficult to assess, because a certain individual variation between patients is to be expected. Furthermore, although we have identified alterations in APP processing, at both the α- and β-cleavage sites, it remains to be confirmed by which enzymes the cleavages occur. Future studies will also be needed to elucidate the impact of each of the three disease mechanisms presented here, as well as the temporal and structural aspects of the development of Aβ pathology. Some of these future studies could be performed in genetically modified mice carrying the Uppsala APP mutation.

MATERIALS AND METHODS

Study design

This study was designed to characterize the clinical and mechanistic features of the herein identified Uppsala APP mutation, which results in early onset familial AD. Three members of the “Uppsala family” showing manifest AD symptoms were identified as mutation carriers and subjected to clinical evaluation, structural and amyloid brain imaging, and lumbar puncture for analyses of CSF biomarkers. Furthermore, brain tissue from one of the mutation carriers was analyzed postmortem to assess a range of pathological markers—Aβ, tau, and neuroinflammation—and stage the pathology according to established criteria. Brain tissue was also analyzed with MALDI imaging and immunoassays to investigate the nature of Aβ pathology in comparison with groups of sAD brains (n = 11) and neurologically normal control brains (n = 9). To study the mechanistic properties of the Uppsala APP mutation, MS and immunoassays were used to analyze Aβ and APP fragments resulting from APP processing. Such studies were performed in (i) CSF from the three Uppsala APP mutation carriers in comparison with CSF from sAD (n = 10) and control (n = 10) and (ii) medium and lysate from cell cultures transfected with APP harboring the Uppsala APP mutation in comparison with wild-type APP. Last, the aggregation behavior and structure of Aβ aggregates were studied with ThT aggregation assay and cryo-EM. Sample sizes for brain tissue and CSF studies were determined to achieve a statistical power of 80%, based on group differences and variability from previous experience of measurements of Aβ concentrations. Researchers were blinded to sample identity where possible. Selection of the brain tissue and CSF samples is stated in the Supplementary Materials. Figure legends contain the sample sizes, replicate information, and statistical tests used.

Statistics

Statistical analyses were performed using GraphPad Prism (versions 6 and 7). Differences between two groups were evaluated for significance with two-tailed Student’s t test and multiple t test when comparing two treatments. Comparisons of three or more groups on a single dataset were performed by one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test. A P value threshold of 0.05 was used for the assessment of statistical significance. Values are shown as means ± SD. Individual subject-level data are reported in data files S1 and S2.

Identification of peptide species. A. L. culture model include N-terminally extended peptides that impair synaptic plasticity. (2014).

Acknowledgments: We thank C. Röder and L. Gremer for help with sample preparation for cryo-EM, discussions, and advice. We also thank P. Hammarström and P. Nilsson for providing fluorophores q-FTAA and h-FTAA. We also thank C. Pagnon de la Vega and S. Foehr for help with sample preparation for cryo-EM, discussions, and advice. We also thank the Uppsala Genome Center for the help with targeted exome sequencing. We thank Uppsala Biorender for the help with targeted exome sequencing. We also thank the Uppsala Genome Center for the help with targeted exome sequencing, L. Streubel-Gallasch for statistical advice, H. Zetterberg for a consultation, and L. M. W. Schönbeck for help with electron microscopy. Last, Fig. 1G was made in part using Biorender.

Funding: This work was supported by the Swedish Research Council (#2016-02120 to L.L. and #2018-02181 to J.H.); the Swedish Alzheimer Foundation (to L.L. and J.H.); the Swedish Brain Foundation (to L.L.); Åke Wibergs Stiftelse (to J.H.); the Swedish Research Council (#2016-02120 to L.L. and #2018-02181 to J.H.); the German Research Foundation within the framework of the Munich Cluster for Systems Neurology (EXC 2145 Synergy, project ID 390857198) and the research unit FOR2290, the BMBF within project CLINSPECT-M, and by JPco-fuND2 2019 Personalized Medicine for Neurodegenerative Diseases 01ED2002B (to S.F.L.).

Competition of interest: M.P.d.l.V., V.G., L.L., D.S., and M.I. designed the study. L.L. obtained the funding. These authors performed the experiments: M.P.d.l.V. (genetic analyses, immunostainings, ELSAs, ThS staining, cell transfection, Western blot, Meso Scale electrochemiluminescence, and ThT assay); V.G. (genetic analyses and plasmid designs); W.M. (MALDI imaging, MS, and LCO stainings); G.G. (cell transfection and immunoblotting with protease inhibitors and CTF fragments); M.Z. (transmission electron microscopy); L.S. (SEC); and S.A.M. (MS for APPUpp cleavage site determination of transfected cell culture). M.P.d.l.V., V.G., W.M., T.D., L.S., J.A., L.N.G.N., A.E., D.W., G.F.S., J.H., S.F.L., L.L., D.S., and M.I. analyzed the data. L.K., R.B., M.L., and M.I. contributed to sample collection. M.P.d.l.V., V.G., D.S., and M.I. wrote the first draft of the paper. All authors contributed to the final version of the paper.

Submitted 5 May 2020
Resubmitted 5 February 2021
Accepted 22 June 2021
Published 11 August 2021
10.1126/scitranslmed.abc6184

The *Uppsala APP* deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation

María Pagnon de la Vega, Vilmantas Giedraitis, Wojciech Michno, Lena Kilander, Gökhan Güner, Mara Zielinski, Malin Löwenmark, RoseMarie Brundin, Torsten Danfors, Linda Söderberg, Irina Aifuzoff, Lars N.G. Nilsson, Anna Erlandsson, Dieter Willbold, Stephan A. Müller, Gunnar F. Schröder, Jörg Hanrieder, Stefan F. Lichtenthaler, Lars Lannfelt, Dag Selhin and Martin Ingelsson

Sci Transl Med 13, eabc6184.
DOI: 10.1126/scitranslmed.abc6184

APP from Sweden

The amyloid precursor protein (*APP*) gene encodes amyloid precursor protein, whose proteolysis gives rise to Aβ peptides. Mutations in *APP* cause familial Alzheimer's disease (AD). In this study, Pagnon de la Vega *et al.* describe a pathogenic APP deletion causing a dominant form of AD. This mutation, called the *Uppsala APP* mutation, results in early onset, fast-progressing AD. At molecular level, the *Uppsala APP* mutation alters the protein processing, resulting in increased Aβ production and rapid aggregation. The results contribute to elucidate the molecular mechanisms regulating AD development and to understand the impact of *APP* mutations on disease pathophysiology.