Response to comment on “Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI”

Xiaowen Yu1,2,3, Yue Zhang1,2,3*, Zhanjun Jia1,2,3*, Aihua Zhang1,2,3*

The nuclear pregnane X receptor protects against bilateral renal ischemia/reperfusion-induced acute kidney injury in mice.

Recently, we reported that the nuclear pregnane X receptor (PXR) protected against acute kidney injury (AKI) induced by cisplatin or ischemia/reperfusion (I/R) renal injury in mice and rats (1). In their Technical Comment, Luan et al. (2) confirmed our finding of a protective role of PXR in cisplatin-induced kidney injury, but they failed to find a beneficial effect of treatment with the PXR agonist pregnane 16α-carbonitrile (PCN) or rifampicin on ischemic AKI in wild-type mice or mice carrying human PXR (hPXR). They also claimed that PXR was not expressed in the human kidney, which may diminish the potential of a PXR agonist in treating human AKI. We carefully reviewed their results and found obvious differences in the animal models used and the drug treatment.

First, Luan et al. (2) stressed the absence or extremely low expression of PXR in the human kidney based on three reports published in 1998 and 2004 using Northern blot and RT-PCR (3–5). It is well known that Northern blot and RT-PCR have limitations in the sensitivity of mRNA detection. According to a number of microarray and single-cell sequencing datasets, PXR mRNA is detectable in the human kidney, although expression is low in the human kidney compared to liver and intestine (https://www.nephroseq.org/; http://humphreyslab.com/SingleCell). We also examined the mRNA and protein expression of PXR using human para-carcinoma kidney tissues and human kidney cells and found the existence of PXR mRNA and protein (Fig. 1, A to E). Most proteins and genes exhibit differential expression in different types of cells and organs (6), and lower expression of an mRNA or protein does not mean low activity or no function. In fact, the expression profile of PXR in murine kidney was much lower than that in other organs (7). However, both our group and Luan’s group found the same protective effect of PXR against cisplatin-induced AKI. Moreover, mRNA expression does not always correlate with protein abundance, which can be regulated by post-transcriptional mechanisms.

Second, in their experiments, Luan et al. (2) performed the unilateral nephrectomy in mice, followed by 35 min of ischemia. This could alter renal blood flow dynamics and enhance the working load of the injured kidney compared to the bilateral I/R renal injury mouse model that we used. It is known that any protection by drug load of the injured kidney compared to the bilateral I/R renal injury could alter renal blood flow dynamics and enhance the working load of the injured kidney compared to the bilateral I/R renal injury. This was also the case in the unilateral nephrectomy (UN) model used by Luan et al. (2), which was subjected to unilateral ischemia and reperfusion renal injury. Consistent with the data of Luan et al. (2), PCN did not protect renal function and tubular morphology in this unilateral AKI mouse model. Indeed, the unilateral PXR mouse model showed more severe tubular injury as indicated by the extensive necrosis of the proximal tubular cells, denuded tubules, and protein cast in the tubular lumens (fig. S1C). However, in the bilateral I/R renal injury model, mice were subjected to bilateral I/R renal injury. In agreement with the results shown in our previous study (1), both intraperitoneal and intragastric administration of PCN (50 mg/kg per day) resulted in reduced serum creatinine (sCr) and blood urea nitrogen (BUN), along with improved kidney pathology in mice subjected to bilateral I/R renal injury (Fig. 1, F to H). In the unilateral I/R renal injury model of Luan et al. (2), mice were intragastrically administered PCN (40 mg/kg per day) for 4 days and then subjected to unilateral nephrectomy and I/R renal injury. These mice showed similar kidney function compared to the bilateral I/R renal injury model. Interestingly, in the study of Luan et al. (2), mice were intragastrically administered PCN (40 mg/kg per day) for 4 days and then subjected to unilateral nephrectomy and I/R renal injury.

Finally, Luan et al. (2) generated hPXR mice and observed the role of rifampicin in the activation of hPXR in a unilateral I/R renal injury model in this mouse strain. However, cases of renal I/R with uninephrectomy are rare in the clinic so the disease model of Luan et al. (2) does not represent a common clinical situation.
express hPXR in mouse kidney (8). Moreover, hPXR shares only 77.4% sequence similarity with mouse PXR such that the correct hPXR gene expression cannot be guaranteed with a mouse promoter. If hPXR in mouse kidney cannot drive expression of the target genes of mouse PXR, then hPXR mice would have a negative phenotype following rifampicin treatment.
In summary, through additional experiments and by analyzing datasets from other groups, our results suggest that there is an expression of PXR in the human kidney. Meanwhile, we found that the protective effect of the PXR agonist PCN on ischemic AKI in mice may depend on the severity of renal tubular damage. Further investigation is required to determine whether a higher dose of PCN or other types of specific PXR agonists could protect against advanced ischemic AKI.

SUPPLEMENTARY MATERIALS

stm.sciencemag.org/cgi/content/full/13/593/eabf9849/DC1

Fig. S1. PCN gavage did not protect against uninephrectomy I/R-induced AKI in wild-type C57BL/6 mice.

Data file S1. Primary data.

REFERENCES AND NOTES


Funding: This work was supported by grants from the National Natural Science Foundation of China (82090022, 81325004, 81830020, 81530023, and 81625004 to A.Z.; 81700604 to X.Y.; 81570616 to Y.Z.; and 82070701, 81670647, and 81873599 to Z.J.), the National Key Research and Development Program (2019YFA0802702 and 2016YFC0906103 to A.Z.), and the National Science Foundation of Jiangsu Province (BL2014007 to A.Z. and BK20170148 to X.Y.).

Author contributions: X.Y., Z.J., Y.Z., and A.Z. designed the study. X.Y. performed the experiments and analyzed the data. X.Y., Z.J., and A.Z. interpreted the results. X.Y., Z.J., and A.Z. wrote the manuscript. Competing interests: The authors declare that they have no competing interests.

Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials.

Submitted 4 December 2020
Accepted 23 April 2021
Published 12 May 2021
10.1126/scitranslmed.abf9849

Citation: X. Yu, Y. Zhang, Z. Jia, A. Zhang, Response to comment on "Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI". Sci. Transl. Med. 13, eabf9849 (2021).
Response to comment on "Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI"

Xiaowen Yu, Yue Zhang, Zhanjun Jia and Aihua Zhang

Sci Transl Med 13, eabf9849.
DOI: 10.1126/scitranslmed.abf9849

This article cites 8 articles, 4 of which you can access for free
http://stm.sciencemag.org/content/13/593/eabf9849#BIBL

Use of this article is subject to the Terms of Service

Science Translational Medicine (ISSN 1946-6242) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Translational Medicine is a registered trademark of AAAS.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works