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activated CD4 T cells correlated with the TH2 cytokines IL-4, IL-5, 
and IL-13, but not with the TH1 cytokine IFN- and the TH17 cyto-
kine IL-17A, suggesting a yet predominant TH2 activation profile in 
18-month-old infants. Conversely, the covariation matrix for HD-
MAPP stimulation showed a correlation between many cytokines and 
 T cells only, justifying that HDMAPP is a pure  T cell stimulator 
(26). Collectively, these cell-to-cytokine covariation matrices illus-
trated the types of responding blood immune cell subsets beneath 
the observed overall cytokine profiles and further pinpoint the cellu-

lar basis for the different versus overlapping response patterns in-
duced by the microbial ligands.

Large heterogeneity in innate cell response profiles 
to microbial ligands in 18-month-old infants
While general cell-to-cytokine profiles are relevant to understand 
overall immune responsiveness in infants, it is also vital to examine 
underlying response differences between infants, as these might be 
of relevance for disease trajectories. To examine this, we first focused 

Fig. 4. Ligand-dependent associations between immune cell subsets and the functional response pattern in blood of 18-month-old infants. The cell-to-cytokine 
covariation matrices per activating stimuli from Fig. 2, visualized as SCCs between relative cell frequencies and delta concentrations of released cytokine from stimulated 
versus unstimulated whole blood. Whole blood was stimulated to activate TLR3 (viral dsRNA), TLR7/8 (viral ssRNA), TLR4 (bacterial LPS), NOD2 (bacterial peptidoglycan), 
and NLRP3 (alum in concert with low-dose LPS). Unstimulated controls were added media alone. NLRP3 data were based on alum + low LPS stimulation minus the low 
LPS stimulation control. SCC ranges from −0.5 to 0.5 (legend at the bottom) and are only plotted if P < 0.01. Cytokines are color-coded at the top to match the designations 
of response types as in Fig. 1C. N = 541.
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on identifying whether distinct innate 
immune response profiles were induced 
in the 18-month-old infants upon anti-
microbial and inflammasome activation 
of immune cells. We used hierarchical 
clustering on selected innate ligand-
related cytokines (cell-to-cytokine SCC > 
0.25) and grouped infants with similar 
cytokine responses into immune phe-
notypic clusters [Fig. 5 and fig. S5, clus-
ters 1 to 7 (C1 to C7)]. This subgroup 
clustering resulted in identification of five 
to seven response phenotypes, depend-
ing on the stimulating innate ligand 
(TLR3: six clusters; TLR7/8: seven clus-
ters; TLR4, NOD2, and NLRP3: five 
clusters; Fig. 5). One large proportion 
of infants (20 to 40%) produced low 
amounts of all of the innate ligand-related 
cytokines in response to stimulation and 
was designated as low responders (C1 in 
TLR3/4/NOD2/NLRP3; C2 in TLR7/8). 
Overall, the subgroup clustering illustrated 
large heterogeneity of the functional re-
sponse in 18-month-old infants to the 
generic ligands from viruses and bacteria, 
as well as from the vaccine adjuvant alum. 
We found an overall low intra-individual 
overlap to different microbial ligands, 
illustrating that an adverse reaction to 
single-stranded viral RNA does not nec-
essarily result in an adverse immune re-
action to LPS or peptidoglycan (PGN) from 
bacteria or to double-stranded viral RNA 
(data file S1). This demonstrates that the 
individual antimicrobial response profile 
is selective and is based on the type of 
microbial stimulation. When address-
ing the influence of various perinatal 
determinants known to affect asthma 
development in childhood in the group 
of low responders, we identified a com-
mon denominator of more females among low responders for all 
microbial-derived ligands, except for NLRP3 stimulation (tables S5 
to S9). This finding is in congruence with the enhanced innate-based 
immune response identified for the male infants.

Abnormal neutrophil-linked response to viral  
ligands in 18-month-old infants developing transient 
childhood asthma
We then looked into the relation between these innate immune-
defined clusters from stimulated blood of 18-month-old infants and 
development of childhood asthma. In our cohort of longitudinally 
clinically assessed children with immune analyses, we observed an 
overall asthma prevalence of 23% (127 of 541) until 6 years of age. 
At 6 years of age, 16% had outgrown their asthma diagnosis, which 
was termed transient asthma, whereas asthma persisted in 7% of the 
children, here characterized as persistent childhood asthma. To ad-
dress relations between immune competence at 18 months of age 

and development of childhood asthma, we examined whether infants 
within the identified innate response clusters exhibited increased or 
decreased risk of asthma until 6 years of age.

For overall asthma prevalence, infants with enhanced IL-18, CXCL8, 
IL-1, IL-6, and CCL20 production in response to single-stranded 
viral RNA (the TLR7/8-C7 cluster, Fig. 5) tended to exhibit enhanced 
risk of asthma until 6 years of age, as compared to infants within all 
remaining clusters [hazard ratio (HR), 1.74 [1.1 to 2.76]; P = 0.018; 
Padj = 0.091; fig. S6, A and B). Looking at the previous cell-to-cytokine 
correlation plot for TLR7/8, these cytokines all associated to neu-
trophil numbers, and infants in the TLR7/8-C7 cluster displayed 
enhanced production of IL-18 per neutrophil as compared to the 
remaining infants (fig. S6C). A similar tendency of increased overall 
asthma risk was seen for the antibacterial PGN-based response 
(NOD2) C3 cluster (HR, 1.66 [1.12 to 2.46]; P = 0.012; Padj = 0.057; 
fig. S6D), which represents individuals displaying enhanced CXCL8, 
IL-6, CCL20, TGF-, and IL-10 release to PGN stimulation. All of 

Fig. 5. Great heterogeneity within innate ligand stimulated immune responses in blood of 18-month-old 
infants. For each of the five innate ligands, we selected cytokines for which the cell-to-cytokine SCC was above 0.25 
and subgrouped the response profiles based on hierarchical clustering. The color code for the chosen cytokines 
corresponds to the type-response designations from Fig. 1C. Data are z-score normalized per cytokine and plotted as 
the average score within each cluster. The identified clusters for each ligand are named by C and a number. The 
overlap across innate stimuli and response profile (cluster) for each individual is provided in data file S1. The percentage 
of infants in a given cluster is given by the width of the cluster and printed below each cluster. N = 541.
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these cytokines correlated to the number of neutrophils in the 
cell-to-cytokine plot for NOD2, and infants in the NOD2-C3 cluster 
displayed increased CCL20 production per neutrophil as compared 
to the remaining infants (fig. S6E).

When subdividing overall asthma cases until 6 years of age into 
children with transient asthma and children with persistent asthma 
at 6 years, we found a significantly enhanced risk of transient asthma 
in children with the neutrophil-linked response to viral single-
stranded RNA (ssRNA; TLR7/8-C7 cluster; HR, 2.17 [1.27 to 3.70]; 
P = 0.0046; Padj = 0.035; Fig. 6, A and B) as compared to the remaining 
children. Consistent with this functional response pattern, children 
who developed transient asthma until 6 years of age also showed 
enhanced frequencies of circulating neutrophils at 18 months of age 
(Fig. 6C), suggesting that the transient asthma phenotype may be 
neutrophil-associated. Infants with an IL-18– and IL-1–based alum 
response (NLRP3-C2), characteristic of an intermediate monocytes/
neutrophil-linked response profile in response to alum, trended toward 
reduced risk for development of transient asthma until 6 years of age 
(NLRP3-C2; HR, 0.32 [0.13 to 0.79]; P = 0.014; Padj = 0.068; fig. S7).

The TLR7/8-C7 children with increased risk for transient asthma 
showed no enhanced risk of persistent asthma at 6 years of age (fig. 
S8A), underlining that the neutrophil-linked antiviral IL-18–based 
response is a selective phenotype in 18-month-old infants develop-
ing transient asthma during childhood. Likewise, no statistically 
significant associations were identified between any of the other 
innate immune stimulated response clusters at 18 months of age 
and development of persistent asthma (fig. S8A), suggesting that the 

persistent childhood asthma phenotype may be defined by other 
immune pathways in 18-month-old infants.

An IL-5– and IL-13–enhanced T cell response in  
18-month-old infants precedes development of persistent 
childhood asthma
We also examined the response profile of stimulated  T cells in 
relation to childhood asthma, as the relative frequencies of in vivo–
activated CD4 and CD8 T cells were enhanced in 18-month-old 
infants developing persistent childhood asthma (fig. S8B). Because 
frequencies of recently activated CD4 T cells mainly correlated with 
IL-5 and IL-13 based on the cell-to-cytokine relations, we sought to 
establish whether this was an overall feature in all 18-month-old 
infants by use of the clustering approach. We used hierarchical clus-
tering based on the selected T cell–related cytokines IFN-, IL-5, 
IL-13, IL-31, IL-17A, IL-22, TGF-, and IL-10 to subgroup infants 
into their predominant cytokine response pattern. The phenotypic 
clustering resulted in identification of six distinct  T cell response 
phenotypes, termed on the basis of their predominant cytokine pro-
duction as TH1 (IFN-), TH2 (IL-5 and IL-13), TH17 (IL-17A and 
IL-22), Tregs (TGF-) (30), and mixed (Fig. 7A and fig. S9). The identi-
fied distinct subgrouping of predominant T cell memory responses 
at 18 months of age highlighted a large interindividual variation 
within  T cell responses at 18 months of age. Among the identified 
subgroups, around 20% of infants were found to have a predominant 
IL-5– and IL-13-based TH2 profile in activated  T cells, whereas 
the group of infants with a mixed response profile (10.5%; with high 

IL-5 and IL-13, concurrent with IL-31, 
IL-17A, TGF-, and IL-10) displayed the 
highest IL-5 and IL-13 concentrations 
among all 18-month-old infants. Together, 
the infants with enhanced IL-5 and IL-13 
in stimulated  T cells (TH2 + mixed) 
made up 30% at 18 months of age, which 
illustrates that the earlier reported TH2 
dominance in early life (3–8) may be more 
balanced at 18 months of age, where 14.7% 
were TH1, 7% were TH17, and 11.4% were 
Tregs dominated based on the cytokine 
profiles. The remaining infants (35.7%) 
showed low responsiveness of T cells and 
also displayed significantly lower cell 
frequencies of recently in vivo activated 
CD4 T cells in blood circulation than the 
other children [low responders, 0.011 
[0.0068 to 0.017] (median [interquartile 
range]); remaining infants, 0.013 [0.0087 
to 0.019]; P = 0.02], whereas recently 
activated CD8 T cells did not differ. We 
found no particular risk determinants 
to associate with the low responders to 
SEB stimulation of T cells (table S10).

When associating the  T cell re-
sponse subgroups to the risk of overall 
asthma until 6 years of age, as well as 
the transient and persistent childhood 
asthma phenotypes, we found the infants 
with enhanced IL-5 and IL-13 at 18 months 
of age (TH2 and mixed clusters) to have 
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Fig. 6. A distinct antiviral innate response profile in 18-month-old infants enhances the risk of developing 
transient childhood asthma. Asthma development was followed longitudinally from birth to 6 years of age in the 
research clinic and defined as either transient or persistent asthma at 6 years of age. (A) The dot plot displays the 
relative risk of transient asthma development in infants within the given cluster versus the risk of transient asthma in 
the remaining infants. An encircled dot indicates the statistically significant association given in the text with Padj < 0.05. 
(B) Cox proportional hazards regression analysis of transient asthma development until 6 years of age in infants within 
the TLR7/8-C7 cluster. Percentage of infants in each cluster is given in Fig. 5. The Padj is determined by Benjamini-Hochberg 
FDR correction. (C) Relative prevalence of blood immune cells at 18 months of age in infants developing transient 
childhood asthma versus non-asthmatic children at 6 years of age. Cells were identified on the basis of flow cytometry 
of freshly collected blood and gated as illustrated in fig. S2. N = 541.
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significantly higher risk of developing persistent asthma than non–
IL-5– and IL-13–based groups (Fig. 7, B and C; HR, 2.31 [1.26 to 4.23]; 
P = 0.007; Padj = 0.028). Enhanced IL-5 and IL-13 release from stim-
ulated  T cells significantly increased the risk of persistent asthma 
as compared to transient asthma: odds ratios (OR), 3.25 [1.44, 7.48]; 
P = 0.0049 (table S11). This increased risk is comparable to the risk 
of developing persistent versus transient asthma for children born 
by cesarean section (OR, 3.37 [1.25, 9.33], P = 0.016) and is much 
larger than observed for any of the other asthma-associated perinatal 
risk factors (table S11). No significant associations were found for 
any of the T cell subgroups in relation to development of overall 
childhood asthma and transient asthma until 6 years of age. It is 

moreover notable that the activated T cell phenotypes in infants with 
later persistent asthma did not overlap with those of children who 
developed transient asthma, highlighting that different immune de-
regulation cues underlie the transient and persistent childhood asthma 
phenotypes. The same conclusion is apparent when addressing the 
major risk factors for transient and persistent asthma (table S11).

Early life bacterial colonization of airways in infants is 
associated with the persistent asthma–associated immune 
risk cluster at 18 months of age
We next examined whether any of the major perinatal risk factors 
of asthmatic disease (15) may be linked to the identified immune 
risk clusters. We found colonization with pathogenic bacteria in the 
hypopharynx at 1 month of age to be a major risk factor for enhanced 
IL-5 and IL-13 secretion from stimulated  T cells at 18 months of 
age (TH2 + mixed  T cell clusters; OR, 1.87 [1.26, 2.78], P = 0.0020) 
(Table 1); the risk clusters also associated with persistent asthma. 
We found none of the major disease risk factors to associate with the 
TLR7/8-C7 cluster infants with increased risk of transient asthma 
(table S12).

DISCUSSION
This study represents a large-scale, systems-level analysis of the 
functional immune response in 18-month-old children followed 
longitudinally for extensive clinical monitoring of asthma during 
childhood. When examining the functional immune competence in 
peripheral blood–derived immune cells, we identified the existence 
of five to seven different immune response phenotypes per microbial 
or T cell stimuli at 18 months of age. This revealed a large interindi-
vidual variation in functional response phenotypes to generic immune 
stimulants of bacterial and viral origin. Infants at risk of developing 
transient asthma until 6 years of age displayed a deregulated antiviral 
(TLR7/8) response phenotype that associated to type 17 cytokine 
enhancement without concomitant type 1 immune activation. Such 
immune phenotype may lead to recruitment of neutrophils upon 
viral encounter that, without the commonly coupled antiviral type 1 
DC activation, might result in ineffective elimination of intra-
cellular viral agents, hence provoking propagation of a neutrophil-
associated transient asthma phenotype. Contrarily, children developing 
persistent childhood asthma showed enhanced IL-5 and IL-13 release 
from activated TCR T cells at 18 months of age, reflective of the 
classical TH2-based response profile, and this further associated to 
early airway colonization with pathogenic bacteria. Combined, these 
findings are indicative for different underlying immune pathologies 
in infants preceding development of the transient and persistent 
asthma phenotypes.

The immunological differences associated to sex that we identified 
to exist in 18-month-old infants, both with respect to immune cell 
frequencies and at their functional responsiveness, are congruent with 
previous reports from adults (31, 32). This difference in immune 
competence in early life suggests that boys and girls may react dif-
ferently to exposures, such as vaccines, and thus could play a part in 
the observed sex-dependent variations in vaccine responsiveness in 
infants (33, 34). In this regard, the presented cell-to-cytokine rela-
tionship for each of the microbial-derived ligands may be useful in 
selection of new vaccine regimens targeting specific cellular subsets.

The approach with stratification of infants into subgroups based 
on the ex vivo functional response of blood immune cells to generic 
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Fig. 7. IL-5– and IL-13–based T cell profile at 18 months of age associates with 
development of persistent childhood asthma. (A) Stimulated  T cell response 
cytokines were selected and used for subgrouping of response profiles based on 
hierarchical clustering (z score–normalized per cytokine; fig. S9), resulting in six T cell 
subgroups. The percentage of infants in a given cluster is given by the dimension 
of the cluster and printed below each cluster. (B) The dot plot displays the prevalence 
of the indicated asthma phenotype (overall asthma until 6 years of age, persistent 
asthma at 6 years of age, transient asthma until 6 years of age) of 18-month-old 
infants within the indicated T cell cluster (x axis) as compared to remaining infants. 
Data are shown as ratios calculated as the prevalence of infants with disease within 
the indicated cluster versus the disease prevalence within remaining infants. 
An encircled dot indicates the statistically significant association given in the text 
with Padj < 0.05. (C) Cox proportional hazards regression analysis of persistent 
asthma development (0 to 6 years) within the two IL-5– and IL-13–enriched clus-
ters at 18 months of age compared to remaining infants. The Padj is determined by 
Benjamini-Hochberg FDR correction. N = 541.
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stimulants enabled the identification of a panel of mediators selec-
tively enhanced in stimulated whole blood cultures of 18-month-old 
infants at risk of developing transient versus persistent asthma. 
Because the presently characterized disease-associated immune 
pathways were identified before disease development, the current 
strategy adds to previous seminal endotyping approaches founded 
in active disease settings in atopic dermatitis (35) and childhood 
asthma (14), the latter stratifying into allergic and nonallergic 
asthma in 4- to 15-year-old children. Both asthma subgroups, 
which resemble the herein identified persistent asthma subgroup 
with asthma at 6 years of age, were in Raedler et al. (14) found to 
hold a TH2 phenotype.

Intriguingly, from the innate immune clustering profiles, we found 
that infants differ widely in their immune response toward generic 
bacterial and viral ligands, with only 25 to 50% of infants respond-

ing with an adequate innate-based type 1 and type 17 immune 
response combined with anti-inflammatory IL-10 and little type 2 
cytokine release to bacterial and viral ligands [for TLR3, 43% (C4/C5); 
TLR7/8, 28% (C5/C6); TLR4, 46% (C2/C3/C4); and NOD2, 33% 
(C4/C5)]. Likewise, NLRP3 activation with the common vaccine 
adjuvant alum in concert with low amounts of LPS promoted an 
inflammasome-based IL-18 and IL-1 response (C2) in about 17% 
of infants, a response mainly associated with intermediate monocytes 
and neutrophils, whereas classical monocytes linked to the response 
of the NLRP3-C3 cluster. The remaining 18-month-old infants pro-
duced an inappropriately regulated innate immune response type 
toward the given ligands or were generally poor responders. This 
leaves room for several adverse immune-to-disease links to be identi-
fied on the basis of longitudinal clinical monitoring, which would 
be in line with the notion that different, nonoverlapping immune 

Table 1. Genetic and environmental determinants of the at-risk immune cluster for persistent asthma. Logistic regression analyses of genetic and 
environmental risk determinants on children in the at-risk immune clusters, TCR TH2 + mixed, versus remaining children of the cohort. CI, confidence interval. 

TCR TH2 + mixed Remaining
TCR TH2 + mixed/remaining

OR [CI] P value

N 169 366

Child

  Sex, male, % (N) 54% (91) 49% (179) 0.72 [0.46–1.13] 0.15

  17q21, % (N)* 28% (42) 33% (108) 0.88 [0.52–1.44] 0.61

  Any airway bacteria at 1 month, % (N)† 38% (63) 25% (89) 1.87 [1.26–2.78] 0.0020

Atopy

  Maternal asthma, % (N) 35% (59) 27% (100) 1.43 [0.96–2.11] 0.076

  Paternal asthma, % (N) 27% (44) 23% (81) 1.24 [0.81–1.89] 0.32

  Maternal sensitization, % (N) 40% (67) 35% (126) 1.25 [0.85–1.81] 0.25

  Paternal sensitization, % (N) 51% (82) 45% (156) 1.27 [0.87–1.85] 0.22

  Child sensitization, 6 or 18 months, % (N) 8% (13) 11% (38) 0.70 [0.35–1.31] 0.27

  Childhood eczema, 0–6 years, % (N) 35% (59) 30% (109) 1.26 [0.86–1.86] 0.24

  Leukotriene receptor antagonist, % (N)‡ 10% (11) 5% (12) 2.13 [0.90–5.02] 0.084

  Inhaled corticosteroid treatment, % (N)‡ 23% (26) 16% (41) 1.52 [0.87–2.62] 0.14

Pregnancy

  Smoking in pregnancy, % (N) 5% (9) 8% (31) 0.61 [0.27–1.26] 0.19

  Cat or dog in pregnancy, % (N) 31% (52) 33% (122) 0.89 [0.60–1.31] 0.56

  Antibiotics in pregnancy, % (N) 40% (67) 34% (125) 1.26 [0.86–1.84] 0.23

  Fish oil supplementation, % (N) 51% (87) 48% (175) 1.16 [0.80–1.67] 0.43

  Vitamin D supplementation, % (N) 52% (80) 49% (160) 1.14 [0.77–1.67] 0.51

Birth

  Term birth >37 weeks, % (N) 98% (165) 96% (351) 1.76 [0.63–6.26] 0.30

  Primiparity, % (N) 41% (69) 49% (178) 0.73 [0.50–1.05] 0.092

  APGAR score 5 min >9, % (N) 97% (162) 94% (341) 1.90 [0.75–5.79] 0.18

  Caesarean section, % (N) 14% (22) 19% (69) 0.65 [0.38–1.08] 0.10

  Season of birth, fall/winter, % (N) 58% (98) 55% (200) 1.15 [0.79–1.66] 0.47

  Maternal age at birth, years, mean (SD) 32.7 (4.4) 32.2 (4.2) 1.03 [0.99–1.08] 0.17

 *% homozygous for the risk allele, variant RS2305480.     †Presence of Moraxella catarrhalis, Haemophilus influenzae or Streptococcus pneumoniae.     ‡14 days 
up to sample date.
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programs may be involved in the trajectory to divergent inflammation-
associated diseases (36–38). Subgrouping of infants according to 
their principal  T cell–adaptive immune response profile revealed 
notable preferences for being either a responder with a unique 
 T cell response type (TH1, TH2, TH17, or Treg) or a low responder, 
as only few infants (11%) exhibited a mixed T cell cytokine profile 
yet with a predominant IL-5– and IL-13–based activity pattern. 
IL-5 and IL-13 release from stimulated blood T cells at 18 months 
of age more than doubled the risk of developing persistent child-
hood asthma, indicating that a mixed T cell response profile at 
18 months of age, if encompassing enhanced IL-5 and IL-13 ac-
tivity, would not rescue one from the increased risk of developing 
persistent asthma.

Identification of the link between the TLR7/8-C7 cluster and 
transient asthma risk made it apparent that the response to ssRNA 
viruses may be dysregulated in infants at risk of transient asthma. 
While it is widely accepted that single-stranded RNA viruses such as 
respiratory syncytial virus (RSV) and rhinoviruses, which stimulate 
immune responses via TLR7/8 activation, can cause asthma exacerbations 
(39), it has, to our knowledge, not previously been reported that a de-
regulated neutrophil-linked antiviral IL-18–based response seems to 
be selectively linked to transient asthma development, and not to 
persistent asthma. Moreover, it is also notable that such response 
pattern is detectable in stimulated blood-derived immune cells already 
at 18 months of age. It is also less well established that early inade-
quate antibacterial immune responses may associate with persistent 
asthma development. We have previously reported an association 
between early hypopharyngeal colonization with certain airway-
associated bacteria and later asthma development in high-risk in-
fants of asthmatic mothers in the COPSAC2000 cohort (40), which was 
then later identified to relate to an early adverse antibacterial TH2 
response (enhanced IL-5 and IL-13) in afflicted children (41). In the 
current unselected COPSAC2010 cohort, we did not look for antigen-
specific antibacterial TH2 responses, but our antigen-independent 
identification of heightened IL-5 and IL-13 release from polyclonally 
stimulated T cells from infants with enhanced early bacterial coloni-
zation of airways and increased risk of development of persistent 
asthma points to the same mechanisms of action in this unselected 
cohort. The TH2 connection to the persistent asthma phenotype might 
be a classical hallmark of the persistent disease trail, as memory T cells 
may stay in the body for life and become reactivated at each exposure. 
If the T cell–triggering antigens derive from colonizing airway bacte-
ria (40, 41), as our data of risk determinants indicate, then such 
TH2-activated immune phenotype may result in continuous re-
cruitment of eosinophils into airway tissue (IL-5) and enhanced 
mucus production (IL-13), resulting in triggering of tissue pathologies 
consistent with a persistent asthma phenotype.

Although the present data exemplify that the functional response 
in the immune system at 18 months of age may be useful as a sensor 
of later disease trajectories, it is a study limitation that samples were 
collected at the predefined 18-month time point as compared to 
longitudinal profiling in early life, which may have elucidated indi-
vidual temporal trajectories.

Collectively, this systems immunological approach in 18-month-old 
infants demonstrated the existence of distinct antiviral, antibacterial, 
and T cell response phenotypes, which selectively increased the 
risk of developing transient or persistent asthma during the first 
6 years of life. Our findings point to an inadequate innate immune 
handling of single-stranded RNA viruses as a risk for transient 

asthma development, while enhanced IL-5 and IL-13 activity in 
stimulated blood T cells at 18 months of age enhanced the risk for 
development of persistent asthma at 6 years of age. This latter was 
associated to early airway colonization with pathogenic bacteria. 
Further development of functional blood-based assays to detect these 
selective disease-related immune signatures in at-risk infants may 
assist early disease endotyping and improve prevention and treat-
ment of childhood asthma.

MATERIALS AND METHODS
Study design
Children were enrolled in the COPSAC2010 cohort (16), an ongoing 
unselected clinical prospective birth cohort of 700 children. The 
study was conducted in accordance with the guiding principles of 
the Declaration of Helsinki and approved by the Ethics committee 
for Copenhagen (H-B-2008-093) and the Danish Data Protection 
Agency (j.nr. 2008-41-2599). Both parents gave their informed consent 
before enrollment of the children. Blood was sampled between 
November 2010 and February 2013 in sodium heparin glasses from 
children at 18 months of age. Blood was analyzed the same day as 
sampled (mean = 3.5 hours, SD = 1.4 hours).

Statistical analysis
The fold induction of cytokine release (stimulated/unstimulated) was 
log10-transformed and plotted as polar charts. In addition, a PCA was 
performed on scaled (mean = 0, SD = 1) concentrations of induced 
cytokine release [delta cytokines (stimulated − unstimulated)]. Linear 
models (unpaired Student’s t tests) were used to study the inference 
of concentrations of individual immune cells and concentrations of 
cytokines produced (stimulated − unstimulated) in relation to sex. 
Statistical inference was corrected by the false discovery rate method 
by Benjamini-Hochberg, and data were visualized using the ggplot2 
package for R. Associations between frequencies of cells before stim-
ulation and concentrations of secreted cytokines [delta cytokines 
(stimulated − unstimulated)] were tested using Spearman correlation 
and visualized using the corrplot R package, resulting in cell-to-cytokine 
covariation plots. Following stimulation of TLR3, TLR4, TLR7/8, and 
NOD2, respectively, release of the innate cytokines IL-12p70, IFN-, 
IFN-, CXCL10, IL-18, IL-23, CXCL8, IL-1, IL-6, CCL20, TGF-1, and 
IL-10 (delta stimulated − unstimulated) was scaled (mean = 0, SD = 1) 
and hierarchical clustered (using “hlust” from base R) using the 
complete linkage method. The same method was applied on delta 
concentration of IL-18, IL-1, and CXCL8 after NLRP3 stimulation 
and on the T cell cytokines IFN-, IL-5, IL-13, IL-31, IL-17A, IL-22, 
IL-10, and TGF-1 after SEB stimulation of TCR cells. Dependent 
on the given stimuli, five to seven clusters were selected. Selection of 
the number of clusters was based on á priori knowledge into common 
ligand-induced immune response types and continued until a cluster 
appeared, which represented an effective immune response type, 
and each cluster comprised at least 45 infants. The resulting clusters 
were visualized per stimuli in a heatmap (pheatmap package for R), 
where infants were ordered according to the cluster they belonged 
to. For each stimulus, the mean abundance of each cytokine in each 
cluster was visualized in additional plots. The risk of asthma devel-
opment was assessed by Kaplan-Meier curves, where children of each 
immune response cluster or each immune cell frequency were tested 
against the remaining infants by Cox proportional hazards regres-
sion. Statistical inference to each disease phenotype was corrected 
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by the false discovery rate method by Benjamini-Hochberg. To visual-
ize the differences in disease prevalence between clusters (dot plots), 
we calculated the ratio (log10-transformed) based on the asthma 
prevalence in one immune response cluster divided by the asthma 
prevalence within the remaining children, and visualized using the 
ggplot2 package for R. Logistic regression analysis was used to test 
the association between perinatal risk factors and development of 
persistent versus transient asthma in childhood. The associations 
between perinatal risk factors and children within a given immune 
response cluster versus remaining children were analyzed by logistic 
regression. All presented OR and 95% CIs are univariate. All data 
were analyzed in R v.3.2.0 (Vienna, Austria). Additional methods 
are described in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/12/529/eaaw0258/DC1
Materials and Methods
Fig. S1. Overview of blood sampling at 18 months of age.
Fig. S2. Gating strategy for enumeration of immune cells by flow cytometry.
Fig. S3. Correlations between relative cell frequencies and absolute cell counts.
Fig. S4. Multivariate analysis of cytokine profiles from innate ligand-stimulated blood collected 
at 18 months of age.
Fig. S5. Hierarchical clustering of the functional response profile to innate ligands in blood 
immune cells from 18-month-old infants.
Fig. S6. Distinct antimicrobial innate response profiles in infants associate to overall risk of 
childhood asthma.
Fig. S7. Reduced risk of transient childhood asthma in infants within the NLRP3-C2 at  
18 months of age.
Fig. S8. Early immune phenotypes in infants that develop persistent childhood asthma.
Fig. S9. Hierarchical clustering of the functional response profile in blood  T cells from 
18-month-old infants.
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immune profiles and how they relate to asthma development.
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