Adipose tissue–derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases

Ioannis Akoumianakis*1, Fabio Sanna**, Marios Margaritis1, Ileana Badi1, Nadia Akawi1, Laura Herdan1, Patricia Coutinho1, Harry Fagan1, Alexis S. Antonopoulos1, Evangelos K. Oikonomou1, Sheena Thomas1, Amy P. Chiu1, Surawee Chuaiaphichai1, Christos P. Kotanidis1, Constantinos Christodoulides2, Mario Petrou2, George Krasopoulos3, Rana Sayeed3, Lei Lv1, Ashley Hale1, Meisam Naeimi Kararoudi1, Eileen McNeill1, Gillian Douglas1, Sarah George4, Dimitris Tousoulis5, Keith M. Channon1, Charalambos Antoniades1†

Obesity is associated with changes in the secretome of adipose tissue (AT), which affects the vasculature through endocrine and paracrine mechanisms. Wingless-related integration site 5A (WNT5A) and secreted frizzled-related protein 5 (SFRP5), adipokines that regulate noncanonical Wnt signaling, are dysregulated in obesity. We hypothesized that WNT5A released from AT exerts endocrine and paracrine effects on the arterial wall through noncanonical RAC1-mediated Wnt signaling. In a cohort of 1004 humans with atherosclerosis, obesity was associated with increased WNT5A bioavailability in the circulation and the AT, higher expression of WNT5A receptors Frizzled 2 and Frizzled 5 in the human arterial wall, and increased vascular oxidative stress due to activation of NADPH oxidases. Plasma concentration of WNT5A was elevated in patients with coronary artery disease compared to matched controls and was independently associated with calcified coronary plaque progression. We further demonstrated that WNT5A induces arterial oxidative stress and redox-sensitive migration of vascular smooth muscle cells via Frizzled 2–mediated activation of a previously uncharacterized pathway involving the deubiquitinating enzyme ubiquitin-specific protease 17 (USP17) and the GTPase RAC1. Our study identifies WNT5A and its downstream vascular signaling as a link between obesity and vascular disease pathogenesis, with translational implications in humans.

INTRODUCTION

Evidence suggests that obesity is closely related to vascular disease (1). However, the described U-shaped association between body mass index (BMI) and mortality (2) indicates the need for better understanding of the links between adipose tissue (AT) biology and vascular (patho)physiology to develop therapeutic strategies to prevent the vascular complications of obesity.

AT is a dynamic organ with regional biological variability (3), secreting a wide range of adipokines with vascular effects (4, 5). Perivascular AT (PVAT) exerts paracrine effects on the vascular wall, whereas “remote” AT depots such as subcutaneous AT (ScAT) and thoracic AT (ThAT) exert endocrine effects by enriching the circulating adipokine pool. Recent evidence suggests that obesity is associated with a shift of the AT secretome from a vasoprotective/antiatherogenic to a proatherogenic phenotype (6).

Redox signaling is central to vascular disease, exerting multiple cytotoxic and proinflammatory effects (7). Reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are major sources of vascular reactive oxygen species (ROS), and the activity of some NOX isoforms (namely, NOX1 and NOX2) is dependent on guanosine triphosphatase (GTPase) RAC1 (8). In turn, ROS regulate the migration of vascular smooth muscle cells (VSMCs) to the intima layer of the vascular wall, which is involved in vascular disease processes such as atherosclerotic plaque formation (9). However, the mechanisms by which obesity affects vascular redox signaling are unclear.

The wingless-related integration site (Wnt) signaling pathway is activated by a family of Wnt glycoprotein ligands consisting of 19 members in humans (10) and is negatively regulated by secreted frizzled-related proteins (Sfrp), which act as decoy receptors for Wnt ligands (11). Downstream Wnt signaling is mediated by the canonical pathway, which involves β-catenin and is selectively triggered by WNT3 (10), and the noncanonical pathways, which do not involve β-catenin and are selectively triggered by WNT5A and WNT11 (12, 13). Despite the established role of noncanonical Wnt signaling in cancer biology, its role in vascular disease pathogenesis in the context of obesity is unknown.

Recent work suggests that AT secretes WNT5A and SFRP5 (14), molecules with potential vascular effects (15). Imbalance in the AT production of WNT5A and SFRP5 in obesity may result in a “vicious cycle” of increased AT inflammation and insulin resistance (14), indirectly triggering vascular complications of obesity. However, the potential role of AT–derived WNT5A and SFRP5 as direct mediators of atherogenesis in obesity has not been investigated so far. We hypothesized that dysregulated AT secretion of WNT5A and SFRP5 may lead to altered endocrine and paracrine effects on the vascular wall in obesity. We further explored the potential links between AT–derived WNT5A and mechanisms of vascular disease pathogenesis.
RESULTS

Wnt ligand expression profile in AT depots from patients with atherosclerosis

We first explored the gene expression profile of all 19 Wnt ligands in human PVAT, ThAT, and ScAT. WNT5A was the most highly expressed Wnt ligand in PVAT (Fig. 1A), whereas WNT11 was the most highly expressed Wnt ligand in ThAT and ScAT, with WNT5A still being among the four most highly expressed Wnt ligands in these depots (Fig. 1, B and C). Since both WNT5A and WNT11 are known to be noncanonical Wnt signaling pathway activators and considering that WNT5A is the most abundant PVAT-derived paracrine ligand of the two, we focused on the potential role of WNT5A as a mediator of the vascular complications of obesity via noncanonical Wnt signaling.

WNT5A and SFRP5 adipose gene expression profiles in obesity

Plasma WNT5A was significantly increased in obese humans (Fig. 1D), accompanied by reduced plasma concentration of its antagonist SFRP5 (Fig. 1E). We then focused on evaluating the WNT5A/SFRP5 ratio because this is regarded as a more accurate integrated indication of overall Wnt signaling balance compared to evaluating WNT5A and SFRP5 concentrations individually (16). We observed a strong positive correlation between BMI and plasma WNT5A/SFRP5 ratio (Fig. 1F). Consistently, there was a positive association between BMI and the gene expression of WNT5A/SFRP5 in human ThAT (Fig. 1, G to I) but not in human ScAT (fig. S1, A to C). This suggests that increased WNT5A/SFRP5 gene expression in visceral adiposity (ThAT) could be linked to obesity-related vascular disease in humans.

Interactions between obesity, WNT5A/SFRP5, and vascular disease

We next explored the associations between obesity, WNT5A/SFRP5, and markers of vascular disease. Although obesity was not associated with the gene expression of WNT5A (Fig. 2A), SFRP5 (Fig. 2B), or the WNT5A/SFRP5 ratio in human internal mammary arteries (IMAs) (Fig. 2C), it was linked to a significantly altered gene expression of WNT5A and SFRP5 in human PVAT. PVAT from obese/morbidly obese patients significantly expressed more WNT5A (Fig. 2D) and less SFRP5 (Fig. 2E), and thus had a higher WNT5A/SFRP5 ratio compared to lean counterparts (Fig. 2F). Obesity was related to a significant increase in the gene expression of WNT5A receptors Frizzled 2 (FZD2) (Fig. 2G) and Frizzled 5 (FZD5) (Fig. 2H) but not receptor tyrosine kinase–like orphan receptor 1 (ROR1) (Fig. 2I) in human IMAs. This suggests that, in obese humans, arteries display increased sensitivity to the consequences of Wnt signaling, which may be a mechanistic link to the increase in arterial oxidative stress observed in obesity.

To evaluate the association between the WNT5A/SFRP5 ratio and coronary artery disease (CAD) in humans, we designed a case-control study (study 2) in which 70 patients with CAD were matched for age, gender, and BMI with 70 controls without obstructive CAD [confirmed by computed tomography (CT) angiography as having no coronary plaque causing >50% luminal stenosis]. Patients with CAD had higher plasma WNT5A (Fig. 2J), lower SFRP5 (Fig. 2K), and a higher plasma WNT5A/SFRP5 ratio (Fig. 2L) compared to controls. The presence of CAD was associated with circulating WNT5A [standardized β (Bstand) = 0.23, P < 0.001], SFRP5 (Bstand = −0.21, P < 0.001), and their ratio (Bstand = 0.21, P < 0.001) independently of traditional risk factors that differed significantly between the two cohorts of study 2 (Fig. 2M). WNT5A/SFRP5 ratio and all cardiovascular risk factors (hypertension, hyperlipidemia, diabetes, and smoking) were associated with the presence of CAD by univariate analysis (table S1). However, in a multivariable model that included WNT5A/SFRP5 and all risk factors, only hypertension and hyperlipidemia remained independently associated with CAD, independently from each other (Fig. 2M).

To explore the potential value of WNT5A as a surrogate biomarker of vascular disease progression in humans, we designed a validation study (study 3) that involved individuals scanned by noncontrast CT at two different time points, 3 to 5 years apart, for evaluation of coronary calcified plaque burden. In 68 individuals studied, plasma WNT5A concentration was significantly elevated in patients who demonstrated calcified plaque progression, defined as a difference in coronary calcium score (CCS) ≥ 1 (n = 32) (Fig. 2N; baseline CCS, 0.00 [0.00 to 76.70]; follow-up CCS, 15.63 [0.00 to 182.88] presented as median [25th to 75th percentile] in the entire study 3; differences in CCS between baseline and follow-up (ΔCSS) are further presented in Fig. 2N for each group). Similarly, in 38 patients with baseline CCS = 0, plasma WNT5A was positively associated with the development of new calcification (follow-up CCS, 0.00 [0.00 to 6.93] presented as median [25th to 75th percentile] in the entire study arm; follow-up CCS values in the new-onset calcification group are also further presented in Fig. 2O). Upon multivariate regression analysis, plasma WNT5A was associated with progression of calcification (Bstand = 0.242, P = 0.047) and new-onset calcification (Bstand = 0.367, P = 0.03) independently of age and sex (table S3).

WNT5A/SFRP5 as regulators of redox state in the human arterial wall

We observed that BMI was associated not only with increased circulating and AT WNT5A/SFRP5 ratio but also with higher basal (Fig. 3A) and NADPH-stimulated (Fig. 3B) superoxide (O₂⁻) generation in human IMA segments. To examine whether the WNT5A/SFRP5 balance could alter human arterial redox state and thus be a mechanistic link between obesity and oxidative stress, we next explored the interactions between O₂⁻ generation in human IMAs and WNT5A/SFRP5 ratio in plasma and PVAT from the patients in study 1. High-plasma WNT5A/SFRP5 ratio and high WNT5A/SFRP5 expression in PVAT were related with higher basal and NADPH-stimulated O₂⁻ production in human IMAs (Fig. 3, C to F), whereas arterial WNT5A/SFRP5 gene expression was not associated with arterial redox state (Fig. 3, G and H). Because endogenous WNT5A gene expression in the human IMA is negligible compared to that in PVAT (fig. S1D), we hypothesized that the effects of WNT5A on the arterial wall are endocrine (resulting from its increased concentration in the circulation and reaching the endothelium and VSMCs via the lumen and vasa vasorum for large arteries) and paracrine (reaching the VSMCs and the endothelium via diffusion from the PVAT) rather than autocrine.

To understand whether the association between obesity and NADPH oxidase activity in human arteries is dependent on the WNT5A/SFRP5 ratio in PVAT, we performed multivariate analysis in which arterial NADPH-stimulated O₂⁻ was used as dependent variable, and obesity classification, diabetes, smoking, sex, and age were used as independent variables. In the presence of
WNT5A/SFRP5 gene expression in PVAT, in the model, obesity was not a significant predictor of arterial NADPH-stimulated O$_2^•$-, suggesting that the effects of obesity on human arterial redox state are WNT5A-dependent (table S4).

To explore whether the associations between WNT5A/SFRP5 and human vascular redox state are causal, we used ex vivo models of human IMAs (study 4), whereby serial IMA rings were incubated with WNT5A (100 ng/ml), SFRP5 (300 ng/ml), or the combination...
Fig. 2. Interactions between obesity, WNT5A/SFRP5, and vascular disease. (A to C) Gene expression of (A) WNT5A, (B) SFRP5, and (C) the ratio of WNT5A/SFRP5 in internal mammary arteries (IMAs) according to BMI. (D to F) Gene expression of (D) WNT5A, (E) SFRP5, and (F) the ratio of WNT5A/SFRP5 in PVAT according to BMI. (G to I) Gene expression of Wnt receptors (G) FZD2, (H) FZD5, and (I) ROR1 in IMAs according to BMI. (J to L) Circulating plasma concentrations of (J) WNT5A, (K) SFRP5, and (L) WNT5A/SFRP5 ratio in patients with coronary artery disease (CAD) and healthy controls (n = 70). (M) Table of multivariable regression analysis of the association of circulating WNT5A, SFRP5, WNT5A/SFRP5, cardiovascular risk factors, and the presence of CAD in study 2 (n = 70). (N) Plasma WNT5A concentration in patients with or without coronary calcium score (CCS) progression (ΔCCS ≥ 1 = HU, 61.8 [22.6 to 234.6], n = 68, study 3). (O) Plasma WNT5A concentration in patients with or without new-onset calcification (follow-up CCS: 21.7 [2.5 to 27.1], n = 38). (N) and (O) are presented as median [25th to 75th percentile]. Data are presented as median [25th to 75th percentile]. P values in (A) to (N) are calculated by Kruskal-Wallis tests. Study 1 participants with IMA/PVAT samples available for (A) to (I) were as follows: 33 (BMI < 25 kg/m²), 77 (BMI = 25 to 29.9 kg/m²), 42 (BMI = 30 to 34.9 kg/m²), and 13 (BMI > 35 kg/m²).
of the two factors for 45 min, and O$_2^•$− generation was evaluated using lucigenin chemiluminescence and confirmed with dihydroethidium (DHE) staining. The concentration of WNT5A selected was near the maximum of the physiological amount of plasma WNT5A in patients of study 1 (range, 1 to 112 ng/ml). WNT5A induced a 4-fold increase in arterial basal O$_2^•$−, an effect prevented by coincubation with SFRP5 (Fig. 3I).

Similarly, NADPH-stimulated O$_2^•$− was increased (>2-fold) by WNT5A incubation, an effect prevented by SFRP5 (Fig. 3J), and the same was observed when measuring the signal inhibited by the pan-NOX inhibitor Vas2870 (Fig. 3K), confirming that the effect was dependent on NADPH oxidases. To examine whether the consequences of WNT5A on vascular redox state are dependent on the activation of NADPH oxidases, we explored its effects on vascular O$_2^•$− after preincubation of human arteries with Vas2870. In the presence of Vas2870, WNT5A failed to increase vascular O$_2^•$−, confirming the central role of NADPH
oxidases on the WNT5A-induced increase in vascular oxidative stress (Fig. 3, M and N). However, WNT5A did not affect the expression of any of the NOX isoforms (NOX1, NOX2, NOX4, or NOX5; fig. S2). In addition, plasma WNT5A/SFRP5 was not correlated with the expression of NOX2, NOX4, or NOX5 (fig. S3).

WNT5A also reduced nitric oxide (NO) bioavailability in human vessels [evaluated by ex vivo vasorelaxation in response to acetylcholine (ACh)], an effect reversed by SFRP5 (fig. S4). WNT5A had no effect on the endothelium-independent responses to the NO donor sodium nitroprusside (SNP). To understand the underlying mechanism, we explored the effect of WNT5A on endothelial nitric oxide synthase (eNOS) coupling. WNT5A induced eNOS uncoupling in human arteries, demonstrated by increased N-nitro-L-arginine methyl ester (LNAME)–inhibitable O$_2^•−$, an effect reversed by SFRP5 (fig. S4). WNT5A promoted eNOS uncoupling by inducing the oxidation of eNOS cofactor tetrahydrobiopterin (BH4) without affecting the biopterin biosynthetic pathway (no modification of total vascular biopterin content; fig. S4). These data identify WNT5A as a regulator of vascular redox state that induces global changes in vascular redox signaling, influencing both VSMCs and the endothelium.

To further determine the causal effects of WNT5A on vascular NADPH oxidase activity in vivo, we used a doxycycline-inducible TetO mouse model (Wnt5a$+$/rtTA$+$ mice) to induce global overexpression of Wnt5a. Treatment of Wnt5a$+$/rtTA$+$ mice with doxycycline induced marked overexpression of Wnt5a in multiple tissues (fig. S5) resulting in increased plasma WNT5A compared to doxycycline-treated Wnt5a$−$/rtTA$−$ littermate controls (Fig. 3O). Wnt5a$+$/rtTA$+$ mice demonstrated higher basal, NADPH-stimulated, and Vas2870-inhibitable O$_2^•−$ generation (Fig. 3, A to C), without affecting the protein products of any of the NOX isoforms (NOX1, NOX2, NOX4, or NOX5; fig. S2).

Effects of WNT5A on human VSMC migration
To better understand the cellular effects of WNT5A signaling on VSMC biology and the contribution of redox signaling in this context, we incubated human VSMCs with WNT5A (100 ng/ml) in the presence or absence of pegylated superoxide dismutase (peg-SOD; 100 IU/ml), a scavenger of O$_2^•−$, and performed microarray analysis to evaluate the differential gene expression profile induced by WNT5A compared to nontreated controls. WNT5A altered the expression of 1890 differentially expressed genes (DEGs), of which 1057 genes were up-regulated and 833 were down-regulated (fig. S7A).

The protein products of a substantial number of these DEGs were implicated in signal transduction pathways controlling cell growth, cell division, cell death, cell fate, and cell motility (fig. S6B). Functional annotation using the Gene Ontology database showed that 135 of these DEGs were involved in cell motility, acting through pathways known to regulate cell migration (Fig. 7, A and B). Thus, we hypothesized that WNT5A could influence the migration of primary human VSMCs.

We exposed human VSMCs to WNT5A (100 ng/ml) in the presence or absence of SFRP5 (300 ng/ml) and investigated changes in the ability of these cells to migrate using wound healing (fig. S7, C and D) and Boyden chamber (Fig. 7C) assays. WNT5A increased the migration of human VSMCs in an SFRP5-reversible manner (Fig. 7, C and D), without affecting their proliferation (Fig. 7E).

WNT5A could also induce a phenotypic switch of VSMCs, characterized by loss of contractile phenotype markers ACTA2 (actin α2, smooth muscle) and TGLN [transgelin or smooth muscle protein 22 (SM22a)] and increased ratio of metalloproteinase 9 (MMP9) to tissue inhibitors of metalloproteinases TIMP1 and TIMP2 (fig. S8).

Ubiquitin-specific protease 17 as a downstream regulator of WNT5A-mediated redox signaling
To determine the contribution of redox signaling to WNT5A-induced VSMC migration, we incubated primary human VSMCs with WNT5A in the presence or absence of peg-SOD. Peg-SOD prevented the WNT5A-induced changes in VSMC migration (Fig. 8A), suggesting
that the changes in intracellular redox state described previously at least partially mediate the promigratory effects of WNT5A. Microarray results revealed that the effect of WNT5A on 28 of the previously described migration-related DEGs was reversed (at least partly) by peg-SOD, highlighting the DEGs as potential redox-sensitive genes (Fig. 8B).

The maximally differentially regulated (upregulated) gene in response to WNT5A was ubiquitin-specific protease 17 (USP17), a member of a deubiquitinating enzyme multigene family within a tandemly repeated sequence (Fig. 8B and fig. S9A) (17). VSMCs isolated from 10 patients were subjected to in vitro WNT5A treatment with or without peg-SOD, and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that WNT5A increases the expression of USP17 (Fig. 8C). USP17 was previously found to be involved in the activation of small GTPases (18) and to regulate cell motility (fig. S6).

To address the mechanistic role of USP17 in WNT5A-mediated RAC1 activation, we knocked down USP17 using shRNA in HeLa

Fig. 4. WNT5A triggers RAC1 activation, resulting in NADPH oxidases in the human vascular wall. Fold change of phosphorylated c-Jun N-terminal kinase (JNK) in (A) human IMA segments ex vivo (n = 5 of paired samples) in the presence and absence of WNT5A and SFRPs and in (B) Wnt5a+/rtTA+ mouse aortas in vivo (n = 5 per group). (C) Activation of RAC1 and membrane translocation of (D) RAC1 and (E) P47phox subunits of NADPH oxidases in human IMAs (n = 5 of paired samples) ex vivo in the presence or absence of WNT5A and SFRPs. (F) Basal, (G) NADPH-stimulated, and (H) Vas2870-inhibitable superoxide (O$_2^-$) anion production in IMA segments with or without WNT5A and SFRPs, a specific RAC1 inhibitor (n = 8 to 10 pairs per intervention). (I) Basal, (J) NADPH-stimulated, and (K) Vas2870-inhibitable superoxide (O$_2^-$) anion production in Wnts5a/rtTA mouse aortas incubated with or without WNT5A and SFRPs (n = 5 to 7 per group). Data are presented as mean ± SEM. *p < 0.05 versus control in all panels by Wilcoxon signed rank tests.

Fig. 5. WNT5A is secreted by adipocytes and enhances NADPH oxidase activity in human VSMCs via RAC1 activation. Fold change of (A) phosphorylated JNK (n = 5), (B) activated RAC1 (n = 5), and (C) activated β-catenin (n = 6) in VSMCs in the presence or absence of WNT5A and SFRP5. (D) Basal, (E) NADPH-stimulated, and (F) Vas2870-inhibitable superoxide (O$_2^•^-$) production in VSMCs (n = 6 to 11 pairs per intervention) in the presence or absence of WNT5A and SFRP5. (G) Knockdown of WNT5A in human immortalized preadipocytes (n = 3). (H) Basal and (I) gp91-dstat–inhibitable O$_2^•^-$ production in VSMCs cocultured with or without WNT5A-KO preadipocytes displayed lower (n = 5). Data are presented as mean ± SEM. *P < 0.05 versus control by Wilcoxon signed ranks tests (A to F, H, and I) or paired t test (G).
We demonstrate that obesity leads to an imbalance between WNT5A and SFRP5 expression in PVAT and other AT depots such as ThAT, as well as alterations in circulating plasma concentrations in human vascular disease. We show that obesity is associated with up-regulation of WNT5A receptors FZD2 and FZD5, which are involved in noncanonical Wnt signaling in human arteries. WNT5A secreted by human adipocytes enhances arterial NADPH oxidase activity, increasing \(\text{O}_2^- \) generation and inducing endothelial dysfunction and eNOS uncoupling. This \(\text{O}_2^- \) excess (by both NADPH oxidases and, secondarily, uncoupled eNOS) induces redox-driven migration in VSMCs via USP17/RAC1 activation, which may explain the clinical association of WNT5A with vascular disease. Patients with high-plasma WNT5A were at higher risk for calcified plaque progression and new-onset coronary calcification. This work identifies WNT5A, its balance with SFRP5, and its receptors and downstream signaling network as mechanistic links between obesity and vascular complications in humans and as a potential therapeutic target for the prevention and treatment of such complications.

AT biology displays remarkable regional variability and is dysregulated in obesity (19). Several studies have documented the biological discrepancy between visceral and superficial AT (20) and identified inflamed visceral AT as a source of adipocytokines with detrimental paracrine and endocrine effects on the vasculature (5). Previous studies have shown that WNT5A is expressed in the human AT (21) and have suggested that the balance between WNT5A and its decoy inhibitor SFRP5 may be involved in the pathogenesis of obesity and diabetes (21). We hypothesized that WNT5A and SFRP5 secretion from dysfunctional AT could play a role in the development of vascular disease in obesity.

After observing that WNT5A was the most abundant Wnt ligand expressed in the human PVAT, we confirmed that obesity was associated with high WNT5A and low SFRP5 plasma concentrations in patients with CAD. We observed a similar shift of the WNT5A/SFRP5 gene expression ratio in ThAT and PVAT surrounding the IMA. It is therefore likely that increased WNT5A release from these visceral AT depots—as well as the overall increased mass of these AT depots in...
obesity—contributes to the obesity-related increase in plasma WNT5A. Obesity not only increased the exposure of the human arteries to high circulating WNT5A/low SFRP5 (inside-to-outside vascular effects, from the lumen to the vascular wall) and high WNT5A/low SFRP5 from PVAT (outside-to-inside vascular effects, from PVAT to the vascular wall) but also led to up-regulation of WNT5A receptors FZD2 and FZD5 in the human arterial wall. These receptors increased arterial sensitivity to noncanonical Wnt signaling. The combination of increased plasma WNT5A, together with the increased release of WNT5A from PVAT, drives the endocrine and paracrine effects, respectively, of AT-derived WNT5A on the human vascular wall. In a second nested case-control study, we showed a notable increase of plasma WNT5A accompanied by reduced circulating SFRP5 in patients with CAD compared to age-, sex-, and BMI-matched non-CAD controls. Plasma WNT5A was positively and independently associated with both coronary calcification progression and new-onset calcification in humans, suggesting that it has a clinically relevant role in vascular disease progression.

Previous reports have suggested that WNT5A may be involved in endothelial dysfunction, particularly in the context of diabetes.
These studies elegantly supported the notion that WNT5A signaling has vascular implications; however, the ability of WNT5A to regulate vascular redox state was unclear. Considering that obese individuals have elevated vascular oxidative stress due to activation of NADPH oxidases, we hypothesized that AT-derived WNT5A is a link between dysfunctional AT and vascular disease in obesity, and this could be mediated by its effects on human arterial redox state. Redox signaling is directly involved in multiple vascular diseases commonly presented as complications of obesity (24–26).

NADPH oxidases comprise major sources of ROS in the human vascular wall (8). The activation of NOX1 and NOX2 isoforms of NADPH oxidases is dependent on the activation and membrane translocation of RAC1 and P47phox cytoplasmic subunits to form the active enzymatic complex (27). Given that noncanonical Wnt signaling has been linked to activation of small GTPases like Rac, we hypothesized that AT-derived WNT5A may drive arterial oxidative stress via RAC1-mediated NADPH oxidase activation in obesity, as well as by eNOS uncoupling via BH4 oxidation.

Fig. 8. USP17 as a link between WNT5A and vascular redox signaling. (A) Migration of VSMCs incubated with peg-SOD, an intracellular scavenger of superoxide (O$_2^•$−) production (n = 5 to 8 pairs per intervention), and treated with WNT5A. (B) A subset of the WNT5A cell motility DEGs of the microarray analysis were at least partially rescued by superoxide (O$_2^•$−) anion scavenging with superoxide dismutase (peg-SOD) resulting in P values >0.05 (n = 5 pairs, genes presented by descending mean fold change). (C) USP17 expression in VSMCs incubated with peg-SOD and treated with WNT5A (n = 10). (D) RAC1 activation in HeLa cells transfected with shUSP17 and treated with WNT5A (n = 8). Data are presented as mean ± SEM in (A), (C), and (D). *P < 0.05 versus control by Wilcoxon signed rank test in (A) and (C). +P < 0.05 versus untreated empty vector control by Wilcoxon signed rank test; NS by Wilcoxon signed rank test for WNT5A-treated versus untreated shUSP17 cells in (D).
Here, we demonstrated that high WNT5A/SFRP5 ratio, either in plasma or in PVAT surrounding human arteries, is related to significantly higher $O_2^{•−}$ generation in these vessels. The causal association of WNT5A with human arterial $O_2^{•−}$ was subsequently confirmed using ex vivo models of human arteries, and the precise mechanisms were further elucidated in vitro using primary human VSMCs. The in vivo effects of WNT5A on vascular NADPH oxidase activity were then confirmed using a doxycycline-inducible tet-O-Wnt5a model. WNT5A appears to trigger noncanonical Wnt signaling at low (physiological) concentrations, as confirmed in our work, whereas high, supraphysiological concentrations of WNT5A may trigger canonical Wnt signaling. The effect of physiological concentrations of WNT5A on cellular redox state in human VSMCs is mediated by FZD2-induced noncanonical activation of RAC1, resulting in the translocation of GTP-RAC1 and P47phox to the cell membrane and leading to enzymatic stimulation of NADPH oxidases in the vasculature. Coculture of human adipocytes with human VSMCs revealed that knocking down WNT5A in human preadipocytes results into a reduction of $O_2^{•−}$ generation by NOX2 in VSMCs, confirming the paracrine role of adipocyte-derived WNT5A on vascular redox state.

The balance between VSMC migration and proliferation versus apoptosis is crucial for the stability of atherosclerotic plaques (28). Migration of these cells is believed to contribute to atherogenesis, particularly at the early disease stage (29). VSMCs may undergo a phenotypic switch whereby they lose their contractile phenotype markers and start producing metalloproteases, which may lead to fibrous cap thinning a plaque rupture (28). Previous studies have linked WNT5A signaling to reduced VSMC apoptosis (30), but this effect was attributed to canonical Wnt signaling achieved using a supraphysiological WNT5A concentration in vitro (30). Conversely, WNT5A stimulates cellular motility and migration via noncanonical signaling in a variety of cell types (31, 32), whereas oxidative stress can also promote the migration of VSMCs (9). In this context, we hypothesized that WNT5A may affect VSMC phenotype and specifically lead to VSMC migration at least partially via induction of redox signaling.

We demonstrated that WNT5A induces migration of human VSMCs in a redox-sensitive manner that is reversed by peg-SOD, a scavenger of intracellular $O_2^{•−}$. WNT5A may cause a VSMC phenotypic switch, evidenced by down-regulation of contractile gene markers ACTA2 and TAGLN (28) and a concomitant increase in the bioavailability of MMP9, a metalloproteinase with strong associations with plaque rupture (33). Transcriptome analysis revealed that WNT5A regulates a number of migration-related genes in human VSMCs, thus potentially exerting multiple effects on VSMC migration. The locus of USP17, a deubiquitinating enzyme acting as a known activator of small GT-Pases such as RAC (18), was the top hit up-regulated by WNT5A (and partly reversed by peg-SOD) in VSMCs. The USP17/RAC1 link has previously been implicated in diseases in which cell motility plays a pivotal role, such as tumorigenesis (34). However, USP17 has not previously been implicated in vascular biology, nor has it been proposed as a downstream target of WNT5A signaling. Our data support a role for USP17 in mediating the effects of WNT5A on RAC1 activation and controlling vascular redox state, whereas the link between WNT5A and USP17 also appears to be partly redox sensitive. These data identify the WNT5A/USP17/RAC1/NADPH oxidase axis as a potential therapeutic target to modify the vascular effects of obesity.

A limitation of the current study is the lack of in vivo mechanistic data linking WNT5A overexpression with atherosclerosis. Although we demonstrated that high plasma concentrations of WNT5A were related to faster progression of coronary atherosclerosis and development of new coronary calcified plaques in humans, an in vivo experimental model would potentially prove causality of this association. Further, prospectively designed, clinical studies are required to determine the prognostic value of circulating WNT5A as a biomarker for the prediction of vascular disease–related outcomes (e.g., calcified plaque progression, clinical endpoints such as nonfatal myocardial infarction, stroke, and cardiac mortality). Last, it remains unclear whether WNT5A secretion from the AT and/or WNT5A-treated vascular signaling could be targeted therapeutically, and whether such an intervention would have the potential to prevent the vascular complications of obesity.

Obesity is associated with enhanced activation of noncanonical Wnt signaling in the human arterial wall resulting from a shift in the balance between WNT5A and SFRP5 both in the circulation and in PVAT and up-regulation of the WNT5A receptors Fzd2 and Fzd5 on the arterial wall. This results in USP17–mediated activation of RAC1 and downstream activation of vascular NADPH oxidases, leading to $O_2^{•−}$–induced migration of VSMCs. At a clinical level, WNT5A concentration is independently associated with the presence of CAD and progression of calcified coronary atherosclerotic plaque burden. These data identify UPS17 and WNT5A as rational targets for the prevention and/or treatment of vascular complications associated with obesity in humans.

METHODS

Study design

The aim of this work was to explore the role of AT-derived WNT5A in regulating vascular redox signaling and vascular disease progression in humans. We hypothesized that WNT5A would be up-regulated in obesity and would be able to induce vascular NADPH oxidase activation via RAC1 signaling, which could have downstream redox signaling effects triggering vascular disease.

To address these hypotheses, we first explored the associations between obesity, arterial $O_2^{•−}$ generation, and the bioavailability of WNT5A in the circulation, and a variety of AT depots (ScAT, ThAT, and PVAT) in a cohort of 1004 patients undergoing cardiac surgery (study 1; see below). These were used to provide observational insights into the relationship of WNT5A with arterial oxidative stress in the context of obesity. Power size calculations for these clinical studies indicated that we would need 933 patients to detect a 10% difference in arterial NADPH–stimulated $O_2^{•−}$ between the low- and high-plasma WNT5A/SFRP5 tertile with $\alpha = 0.05$ and a power of 0.90 assuming an SD of 100 RLU s$^{-1}$ mg$^{-1}$ tissue.

The clinical link of circulating WNT5A with parameters of vascular disease (presence of CAD, calcified plaque progression, new-onset calcification) was tested in a validation study of 70 patients with CAD matched with 70 non-CAD controls (study 2, see below) and a follow-up study of CCS monitoring in patients having undergone two cardiac CT scans, where baseline and follow-up CCS scores were evaluated and circulating WNT5A was quantified. With 70 patients per group, we could detect a difference of 10 ng/ml in plasma WNT5A with $\alpha = 0.05$ and a power of 0.9 (assuming plasma WNT5A SD = 9 ng/ml).
Ex vivo mechanistic experiments were used to test the direct signaling effects of WNT5A incubations on human arteries harvested during surgery in a series of mechanistic experiments performed in a paired design for individual patients. On the basis of previous work from our group, we estimated that with a minimum of five pairs of samples (serial rings from the same vessel), we would be able to identify a change of \(\log(\text{O}_2^-) \) by 0.48 with \(\alpha = 0.05 \), a power of 0.9, and SD for a difference in the response of the pairs of 0.25.

The effect of WNT5A on arterial \(\text{O}_2^- \) production was validated with a short-term proof-of-concept mouse experiment of global inducible Wnt5a overexpression upon doxycycline treatment. We estimated that with five mice per group, we could detect a difference of 250 RLU s\(^{-1}\) mg\(^{-1}\) tissue in aortic \(\text{O}_2^- \) with \(\alpha = 0.05 \) and a power of 0.9 assuming an aortic NADPH-stimulated \(\text{O}_2^- \) SD of 120 RLU s\(^{-1}\) mg\(^{-1}\) tissue).

The integrated effects of WNT5A on vascular redox state and downstream redox signaling events such as cell migration were evaluated in vitro in primary VSMCs isolated from human vascular segments. Similarly to the ex vivo experiments, we estimated that with five pairs of wells, we would be able to identify a change of 175 RLU s\(^{-1}\) µg\(^{-1}\) protein in VSMC NADPH-stimulated \(\text{O}_2^- \) with \(\alpha = 0.05 \), a power of 0.9, and SD = 85 RLU s\(^{-1}\) mg\(^{-1}\) tissue).

Human study protocols were in agreement with the Declaration of Helsinki, and all patients provided written informed consent before enrolment. All studies (clinical or experimental) were performed blinded. Human studies were approved by local research ethics committees (under RECs 11/SC/0140 and 15/SC/0545). All animal studies were conducted with ethical approval from the Local Ethical Review Committee and in accordance with the U.K. Home Office regulations (Guidance on the Operation of Animals, Scientific Procedures Act, 1986).

Human studies protocols

Study protocols were in agreement with the Declaration of Helsinki, and all patients provided written informed consent before enrolment. The demographic characteristics of the participants of all study arms are presented in table S1. Hyperlipidemia and hypertension were defined according to the latest European Society Cardiology Guidelines (35, 36). Diabetes mellitus was defined according to the American Diabetes Association guidelines (37). Obesity was defined according to the Adult Treatment Panel III guidelines (38).

In vivo clinical studies (studies 1 to 3)

Study 1 comprised 1004 prospectively enrolled patients undergoing cardiac surgery [including coronary artery bypass grafting (CABG) and valve replacement/repair] at the John Radcliffe Hospital (Oxford University NHS Foundation Trust, United Kingdom). Exclusion criteria included inflammatory, neoplastic, renal, or hepatic diseases. Fasting blood samples were obtained on the morning of surgery and were used for plasma isolation for circulating biomarker measurements. During surgery, segments of the IMA with its surrounding PVAT, ThAT from the paracardial region, and ScAT from the chest were collected, transferred to the laboratory on ice, and processed for ex vivo experiments, vasomotor studies, and measurement of vascular \(\text{O}_2^- \). Study 2 included 70 individuals with CAD and 70 controls without CAD (confirmed with coronary CT angiography). Individuals were matched for age, gender, and BMI for cross-sectional studies comparing circulating WNT5A and SFRP5. Study 3 consisted of 68 individuals that underwent two noncontrast CT scans 3 to 5 years apart (48.5 ± 5.8 months) to study progression of atherosclerotic disease in the coronary arteries. The development of new calcification and the progression of existing calcified atherosclerotic plaques were compared between the two scans.

Ex vivo studies with human vessels (study 4)

The human ex vivo study (study 4) included 94 patients undergoing cardiac surgery at the John Radcliffe Hospital (Oxford University NHS Foundation Trust, United Kingdom). Patients were prospectively recruited and patients with inflammatory, neoplastic, renal, or hepatic diseases were excluded. Human IMA and saphenous vein (SV) segments were collected during surgery and transferred to the laboratory on ice. IMA samples were processed in the laboratory as explained in relevant sections, subjected to ex vivo incubations, and ultimately used for vascular \(\text{O}_2^- \) quantification, vasomotor studies, biopterin measurements, and downstream signaling evaluation as described later.

In vivo animal studies

A doxycycline-inducible WNT5A knock-in mouse model was used to determine the in vivo effects of WNT5A on vascular NADPH oxidase activity. FVB/N Tg(tetO-Wnt5a)17Rva/J mice were obtained from the Jackson Laboratory (stock number 022938) and crossed to mixed background C57BL/6, 129/SV, FVB CAG-rtTA (generated by L. Dow in the laboratory of S. Lowe at the Memorial Sloan Kettering Cancer Center, USA) (39). Mice were backcrossed to C57BL/6 background seven times before the study. TetO-Wnt5a\(^+\) and rtTA\(^+\) mice were then crossed, obtaining double transgenic mice, and rtTA\(^+\) single transgenic mice were kept as control animals. Doxycycline hydroxylate (2 mg/ml; J60579, Alfa Aesar) was administered to both double transgenic tetO-Wnt5a\(^+\)/rtTA\(^+\) and control tetO-Wnt5a\(^+\)/rtTA\(^-\) animals via drinking water, containing 5% sucrose overnight to induce Wnt5a expression. Considerable weight loss (up to ~15% of body weight) was observed after 3 days of doxycycline treatment; therefore, this mouse model was not suitable for long-term experiments as per local committee ethics. Overnight doxycycline treatment induced minor weight loss and did not compromise the welfare of the animals. DNA extracted from experimental animal ear notches was used for genotyping with the following PCR primers:

- C57BL/6, FVB CAG-rtTA
- CCM, 5′-CGAAACTCTGGTTGACATG-3′
- CTG, 5′-ATGCCCTGGCTCAAAATAC-3′
- CWT, 5′-TGCCCTATCATGGTGTCAA-3′
- C57BL/6, FVB/N Tg(tetO-Wnt5a)17Rva/J
- 17815, 5′-ACAAAGACGATGACGAAAGC-3′
- 17816, 5′-CGCACCCTTCTCAAGTGACTG-3′
- oIFR7338, 5′-CTAGGCACAGAATTGGAGATC-3′
- oIFR7339, 5′-GAGTGGGAAAATCTGTCATCC-3′

Mice were housed in a specific pathogen–free environment in Tecniplast Sealsafe IVC cages (floor area, 542 cm\(^2\)) with a maximum of six other mice. Mice were kept in a 12-hour light/dark cycle and in controlled temperatures (20° to 22°C) and fed normal chow and water ad libitum. A detailed phenotyping of the mouse model is presented in fig. S4.

Blood sampling and circulating biomarker measurements Humans

Preoperative venous blood samples were collected from subjects of study 1 after 8 hours of fasting and in particular on the morning of
surgery as previously described (40). Blood samples were also collected from subjects of study 2 after 8 hours of fasting upon admission. Similarly, blood samples from study 3 participants were collected after 8 hours of fasting only before the cardiac CT scans. After centrifugation at 2000g at 4°C for 15 min, plasma was collected and stored at −80°C until assayed. Plasma WNT5A and SFRP5 were measured by using commercially available enzyme-linked immunosorbent assay (ELISA) kits (catalog number SEP549Hu, Cloud Clone Corp; catalog number MBS702373, MyBioSource, respectively) following the manufacturer’s instructions.

Mice

Blood (900 μl) was drawn from the vena cava into a syringe containing sodium heparin. Blood samples were centrifuged for 15 min at 3000 rpm at room temperature. Plasma was subsequently centrifuged for 5 min at 13,000 rpm to remove remaining cells and platelets and immediately frozen at −80°C. Plasma WNT5A was measured by using a commercially available ELISA kit (catalog number SEP549Mu, Cloud Clone Corp.) following the manufacturer’s instructions.

Human AT and vessel harvesting

IMA samples were harvested with a “no touch” technique with their PVAT at the time of CABG as we have described previously (41). Vascular segments were transferred into oxygenated (95% O2/5% CO2) ice-cold Krebs Henseleit buffer, and the vessel lumen was flushed gently by using an insulin syringe to remove blood. Each vessel was separated from its surrounding AT in the laboratory, under magnification by the same operator, to limit between-patient variability. The same anesthetics were used in all cases, and each sample was always obtained at the same stage of the operation to limit interpatient variability. ThAT and ScAT specimens were collected during surgery and then snap-frozen in TRI reagent (catalog number T9424, Sigma) and stored at −80°C until used for RNA isolation.

Transcriptome profiling of WNT5A-treated VSMCs

Treatments and RNA extraction

VSMCs isolated from five individual patients were incubated for 8 hours with WNT5A (100 ng/ml) or peg-SOD (100 U/ml). Patients were selected to be obese and without diabetes mellitus, allowing us to evaluate the integrated effects of WNT5A in the clinically relevant setting of obesity. RNA was extracted from VSMCs using the MagMAX miRNeasy total RNA isolation kit (catalog number A27828, Thermo Fisher Scientific) as mentioned earlier and processed for high-throughput gene expression profiling.

GeneChip human transcriptome array 2.1

The genome-wide expression profiling was carried out at the High-Throughput Genomics Wellcome Trust Centre for Human Genetics (Oxford, United Kingdom). RNA samples were processed using the Affymetrix GeneChip WT PLUS Reagent kit, the manual target preparation for GeneChip whole-transcript expression arrays. The labeled single-stranded cDNA was then hybridized to the Affymetrix HuGene-2.1-st Array Plate and processed on the Affymetrix GeneTitan platform. The microarray data generated by this study have been submitted to the Gene Expression Omnibus (GEO) depository under ID GSE109859.

Statistical analysis

Continuous variables were tested for normal distribution using the Kolmogorov-Smirnov test. Non-normally distributed variables are presented as median [25th to 75th percentile] and whiskers (Tukey). Normally distributed variables are presented as mean ± SEM. Comparisons of continuous variables between two groups were performed using unpaired t test or Mann-Whitney U test as appropriate, whereas comparisons between three or more groups were performed using one-way analysis of variance (ANOVA) or Kruskal-Wallis followed by Bonferroni or Dunn’s post hoc correction for multiple comparisons. Paired comparisons were performed using paired t test or Wilcoxon signed rank test as appropriate. For between-group serial changes, we used two-way ANOVA for repeated measures with interaction terms as presented in the figure legends.

To examine whether the association between obesity and vascular NADPH oxidase activity is independent of WNT5A/SFRP5 expression in PVAT, we performed multivariate linear regression where NADPH-stimulated O2− was used as dependent variable, and obesity classification, age, sex, diabetes, hypertension, and smoking (with/without the addition of WNT5A/SFRP5 expression tertiles in PVAT) were used as independent variables. The relevant Bstand coefficients are presented. To address whether plasma WNT5A, SFRP5, and the ratio of the two were independently associated with the presence of CAD in the nested case-control study 2, we performed multivariate linear regression in which the presence of CAD was used as dependent variable, and hypertension, hyperlipidemia, smoking, and plasma WNT5A or SFRP5 or WNT5A/SFRP5 ratio were used as independent variables. The Bstand is presented for each variable. To examine whether coronary calcified plaque progression or new-onset calcification was associated with plasma WNT5A, we performed multivariate linear regression where calcified plaque progression and new-onset calcification were used as dependent variables, and plasma WNT5A, age, and sex were used as independent variables. All statistical tests were two-tailed and were performed using SPSS version 20.0. P < 0.05 was considered statistically significant. Individual subject-level data are provided in data file S1.

With regard to microarray data processing, normalization, quality control, and differential gene expression analysis were performed with the Affymetrix Transcriptome Analysis Console (TAC 4.0) Software. The statistical comparisons between treatments were done following a repeated measures model for the individual patients. WNT5A pathway enrichment analysis was carried out in ConsensusPathDB-human with DEGs (WNT5A-treated versus untreated controls) that displayed a fold change (linear) of >1 or <−1 and a P value (condition pair) of <0.05. The Gene Ontology database was used to functionally annotate DEGs.

SUPPLEMENTARY MATERIALS

stm.sciencemag.org/cgi/content/full/11/510/eaav5055/DC1

Materials and methods

Fig. S1. WNT5A and SFRP5 expression in ScAT, IMAs, and PVAT.

Fig. S2. Ex vivo effect of WNT5A on NOX isoform gene expression in IMAs.

Fig. S3. Association of plasma WNT5A/SFRP5 with arterial NOX expression.

Fig. S4. Effects of WNT5A on endothelial function and eNOS coupling.

Fig. S5. Phenotyping of the TetO-expression in ScAT, IMAs, and PVAT.

Fig. S6. Phenotyping of isolated primary VSMCs.

Fig. S7. WNT5A dysregulated genes and pathways and effects on VSMC migration.

Fig. S8. WNT5A and VSMC phenotypic switch.

Fig. S9. USP17 as the maximally up-regulated target in response to WNT5A and USP17 knockdown.

Fig. S10. Schematic diagram with proposed mechanism.

Table S1. Demographic characteristics of the study participants.
Table S2. Demographic characteristics of study 1 participants per BMI group.

<table>
<thead>
<tr>
<th>BMI Group</th>
<th>Age</th>
<th>Sex</th>
<th>Systolic Blood Pressure</th>
<th>Diastolic Blood Pressure</th>
<th>Total Cholesterol</th>
<th>HDL Cholesterol</th>
<th>Triglycerides</th>
<th>waist circumference</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0–14.9</td>
<td>15</td>
<td>70%</td>
<td>130/80</td>
<td>50</td>
<td>180</td>
<td>40</td>
<td>150</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>15.0–19.9</td>
<td>14</td>
<td>60%</td>
<td>135/85</td>
<td>55</td>
<td>185</td>
<td>45</td>
<td>160</td>
<td>110</td>
<td>12</td>
</tr>
<tr>
<td>20.0–24.9</td>
<td>13</td>
<td>50%</td>
<td>140/90</td>
<td>60</td>
<td>190</td>
<td>50</td>
<td>170</td>
<td>120</td>
<td>12</td>
</tr>
</tbody>
</table>

References (42–47)

REFERENCES AND NOTES

Table S2.

<table>
<thead>
<tr>
<th>Study</th>
<th>Pathology</th>
<th>Study Details</th>
<th>Participants</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atherosclerosis</td>
<td>The role of adipose tissue. Antioxid. Redox Signal. 29, 313–336 (2017)</td>
<td>550</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from http://stm.sciencemag.org/ on July 29, 2021 by guest
Acknowledgments: We thank C.W. Pugh for providing the rTTA mouse strain and the Oxford High-Throughput Genomics Centre for contributing to microarray experiments. Funding: This study was supported by the British Heart Foundation (FS/16/15/32047 and PG/13/15/30383 to C.A., BH/16/11/32013 to K.C., and Centre of Research Excellence award RG/13/1/30181), the National Institute for Health Research Oxford Biomedical Research Centre, the European commission (ITN network RADOX), and the Novo Nordisk Foundation (NNF15CC0018486). I.A. acknowledges support by the Alexander S. Onassis Public Benefit Foundation. We thank the High-Throughput Genomics Group at The Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/2/09/Z) for the generation of the microarray data. A.P.C. was supported by a Novo Nordisk Postdoctoral Fellowship run in partnership with the University of Oxford. C.C. acknowledges support by the British Heart Foundation (FS/16/45/32359). Author contributions: I.A. conceived and performed experiments, contributed to participant recruitment, performed data analysis, and drafted the manuscript; F.S. conceived and performed experiments, performed data analysis, and contributed to the writing of the manuscript; M.M. performed experiments, contributed to participant recruitment, performed data analysis, and reviewed the manuscript; L.B. performed experiments and reviewed the manuscript; N.A. performed data analysis and reviewed the manuscript; L.H. contributed to participant recruitment, data collection, and analysis; P.C. performed experiments; H.F. performed experiments; A.S.A. contributed to participant recruitment, performed experiments and data analysis, and reviewed the manuscript; E.K.O. contributed to participant recruitment and reviewed the manuscript; S.T. contributed to participant recruitment and data collection; A.P.C. performed experiments and reviewed the manuscript; S.C. performed experiments; C.P. performed experiments; C.C. provided experimental resources and expertise; M.N.K. performed experiments; A.P.C. contributed to the project design, provided experimental resources and expertise; S.G. provided expertise and reviewed the manuscript; D.T. contributed to data analysis and reviewed the manuscript; K.M.C. contributed to participant recruitment, performed experiments and data analysis, and reviewed the manuscript; K.M.C. contributed to the project design, provided experimental resources and expertise; G.D. provided experimental resources and expertise; M.N.K. performed experiments; E.M. provided experimental resources and expertise; G.D. provided experimental expertise and reviewed the manuscript; H.F. performed experiments; A.H. provided experimental resources and expertise; M.N.K. performed experiments; M.N.K. performed experiments; K.M.C. contributed to the project design, provided experimental resources and expertise; S.G. provided expertise and reviewed the manuscript; and C.A. conceived the project, secured funding, oversaw the implementation of individual experiments, performed data analysis, and corrected the manuscript. Competing interests: C.A. and K.M.C. are founders, shareholders, and directors of Caristo Diagnostics, a CT Image analysis spinout company from the University of Oxford. C.C. acknowledges support by the British Heart Foundation (FS/16/45/32359).Author contributions: I.A. conceived and performed experiments, contributed to participant recruitment, performed data analysis, and drafted the manuscript; F.S. conceived and performed experiments, performed data analysis, and contributed to the writing of the manuscript; M.M. performed experiments, contributed to participant recruitment, performed data analysis, and reviewed the manuscript; L.B. performed experiments and reviewed the manuscript; N.A. performed data analysis and reviewed the manuscript; L.H. contributed to participant recruitment, data collection, and analysis; P.C. performed experiments; H.F. performed experiments; A.S.A. contributed to participant recruitment, performed experiments and data analysis, and reviewed the manuscript; E.K.O. contributed to participant recruitment and reviewed the manuscript; S.T. contributed to participant recruitment and data collection; A.P.C. performed experiments and reviewed the manuscript; S.C. performed experiments; C.P. performed experiments; C.C. provided experimental resources and expertise; M.N.K. performed experiments; A.P.C. contributed to the project design, provided experimental resources and expertise; G.D. provided experimental resources and expertise; S.G. provided expertise and reviewed the manuscript; D.T. contributed to data analysis and reviewed the manuscript; K.M.C. contributed to participant recruitment, performed experiments and data analysis, and reviewed the manuscript; K.M.C. contributed to the project design, provided experimental resources and expertise; G.D. provided experimental resources and expertise; M.N.K. performed experiments; E.M. provided experimental resources and expertise; G.D. provided experimental expertise and reviewed the manuscript; H.F. performed experiments; A.H. provided experimental resources and expertise; M.N.K. performed experiments; A.P.C. contributed to the project design, provided experimental resources and expertise; S.G. provided expertise and reviewed the manuscript; and C.A. conceived the project, secured funding, oversaw the implementation of individual experiments, performed data analysis, and corrected the manuscript. Competing interests: C.A. and K.M.C. are founders, shareholders, and directors of Caristo Diagnostics, a CT Image analysis spinout company from the University of Oxford.

Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. The microarray data generated by this study have been submitted to GEO depository under ID GSE109859.
Adipose tissue–derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases

Sci Transl Med 11, eaav5055.
DOI: 10.1126/scitranslmed.aav5055

Adiposity and artery disease

Obesity is a risk factor for cardiovascular disease. Akoumianakis and colleagues studied the link between obesity and atherosclerosis, finding that adipokines that regulate noncanonical Wnt signaling were dysregulated. Patients who were obese and those with coronary artery disease had high amounts of plasma WNT5A, which was associated with progression of calcified plaques. Mechanistically, WNT5A secreted by perivascular adipose tissue induced oxidative stress in blood vessel walls and migration of smooth muscle cells. This study helps shed light on the interaction between adipose tissue and blood vessels and identifies a potential therapeutic target for cardiometabolic disease.