




Kuo et al., Sci. Transl. Med. 11, eaau8587 (2019)     8 May 2019

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

8 of 13

A
       RA patient
         (CCP+)

Inflamed
synovium

       RA ex vivo tissue bioassay
(n = 8 patients)

Triple– A77 �TNF Dex Nap Tofa

Drug treatment

C

*

IL-1

pg
/m

l

0

200

400

600

800

– �TNF

B

E

                          Synovial fibroblasts
                 log2 fold change)

    Macrophage-repressed     Macrophage-induced

Drug blocked 
fibroblast effect

Other genes 
drug affected

D

F

H

Cluster 2

Cluster 4
  IFN/STAT

Cluster 3

Cluster 1

0

�TNF
Tofa
Nap
Dex
A77
Tri

   CD14+ 

single-cell
gene sets 

  RA patient synovial cells

Numer of macrophage genes 
affected by the drug

IP10 (CXCL10)

0

500

1000

1500

pg
/m

l

– Tofa

**

0

0

IL11
CCL20
LIF
SOCS3
RASD1
CSF3
IL33
IL6
PLAU
IER3

      Changes in CD14+ single-cell markers
 in RA synovial cells exposed to medications
                (Normalized enrichment score)

Negative enrichment Positive enrichment

   HBEGF+ blood-derived macrophages
(induced by synovial fibroblasts + TNF)             

      AG-
suppressed

   
 R

A
 s

yn
ov

ia
l c

el
ls

  
 lo

g 2 
fo

ld
 c

ha
ng

e)

    AG-
induced

2000

1500

1000

500

0

IP10 (CXCL10)

– Nap

  pg
/m

l

**

GCSF (CSF3)

2000

4000

6000

0

8000

10,000

  pg
/m

l

Nap–

*

PGE2

– Nap
0

5000

10,000

15,000 *

  pg
/m

l

  RA patient ex vivo synovial cells

IFN-� response

E
n

ri
ch

m
e

n
t 

sc
o

re
 (

E
S

)

  Tofa + RA synovial cells

%
TB

P

200

400

600

0

800

1000

Nap–

HBEGF
*

G

0 1000 2000

Methotrexate

Sulfasalazine

Auranofin

Tofacitinib

Hydroxychloroq.

Triple therapy

Naproxen

Dexamethasone

A77/leflunomide
      HBEGF+

   inflammatory

                          Synovial fibroblasts
log2gg  fold change)

    Macrophage-repressed     Macrophage-induced

0

J

IL-1

pg
/m

l

0

200

400

600

800

– Nap

I

  RA patient ex vivo synovial cells

(FDR adjusted P < 0.1)

Fig. 4. Clinically effective RA medications and a therapeutic EGFR inhibitor target HBEGF+ inflammatory macrophage-fibroblast cross-talk in RA tissue. (A) Number 
of blood-derived macrophage genes affected by RA medications in the presence of TNF and synovial fibroblasts from cultures at 24 hours. Black, fibroblast-regulated 
genes opposed by drug. Gray, all other genes regulated by drug. FDR adjusted P < 0.1. n = 2 to 4 donors. (B) RA patient synovial tissue ex vivo drug response assay using 
highly inflamed synovium (scored by histology) from patients with positive blood titers for anti–cyclic citrullinated peptide (CCP+) antibodies. Dissociated cells placed into 
culture were exposed to a panel of medications for 24 hours. TNF, anti-TNF antibodies. (C) ELISA using supernatants from RA tissue ex vivo assay. n = 8 donors. *P < 0.05 
and **P < 0.01 by Wilcoxon signed-rank test. Bottom: IFN- response upon tofacitinib exposure, bulk RNA-seq, and GSEA. n = 2 donors. (D) Direction and intensity of 
change for CD14+ single-cell cluster markers in RA synovial cells exposed to various medications. Normalized enrichment scores (GSEA). (E, H, and I) ELISAs as described 
in (C). (F) PGE2 ELISA using supernatants. Data are means ± SEM. n = 7 donors. *P < 0.05, paired Student’s t test. (G) qPCR using ex vivo synovial cells treated with naproxen, 
plotted as percentage (%) of TBP. n = 7 donors. Data are means ± SEM. *P < 0.05, paired Student’s t test. (J) Gene expression changes induced by the EGFR inhibitor AG-
1478 in RA patient ex vivo synovial cells (y axis) compared to changes in synovial fibroblasts induced by macrophages and TNF (x axis, data from Fig. 3A); n = 2 donors. FDR 
adjusted P < 0.1, plotted as a log2 fold change. Highlighted genes are from Fig. 3A.
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fibroblast invasiveness and GCSF production concomitant with 
enhanced neutrophil accumulation—dominant features of RA joint 
pathology (36, 37, 40). In inflammatory arthritis in vivo models, 
disease progression is driven by EGF ligands, EGF receptor activity, 
and the enzyme iRhom2, which mediates release of both TNF and 
HB-EGF from immune cells (60–63). Our data provide relevance to 
these findings in human disease and a mechanistic understanding 
of the cellular cross-talk involving growth factors in RA joints. TNF 
and HB-EGF have been implicated as pathologic drivers of kidney 
disease in the autoimmune condition lupus (64, 65). Thus, linked 
TNF and EGFR responses may be a unifying and targetable feature 
in tissues affected by disparate autoimmune conditions.

Using perturbations relevant to human disease, namely, FDA-
approved medications, we have detailed the disruption of intercellular 
interactions in patient samples and the resulting cellular phenotypes, 
thereby gaining insights into the complex consequences of medications 
on RA joint tissue. Our data yielded insights into a long-standing 
question of why anti-inflammatory COX inhibitors known as NSAIDs 
are not “disease modifying” in RA (15). Our data suggest that NSAIDs, 
like naproxen, block the prostaglandin-mediated arm in HBEGF+ 
inflammatory macrophage polarization, but still permit macrophage 
TNF responses. Thus, NSAID therapy in RA likely redirects HBEGF+ 
inflammatory macrophages toward a classic proinflammatory M1-
like phenotype, which would presumably perpetuate inflammation, 
albeit through a different pathway. In that regard, NSAIDs may best 
be used in combination with medications like anti-TNFs to most 
effectively target HBEGF+ inflammatory macrophage polarization. 
However, COX inhibition by naproxen may also prove problematic 
in the other RA-enriched macrophage phenotype, by inducing 
the cluster 4 IFN/STAT response, consistent with the previously 
documented and robust suppression of IFN responses by prosta­
glandins (54, 56). Thus, NSAIDs are permissive of pathologic 
responses for two RA-enriched macrophage phenotypes. These data 
speak to the greater need to understand tissue microenvironment 
factors that polarize macrophages and how, in the presence of ther­
apeutics, the intercellular communication networks are rewired and 
subsequently repolarize macrophages into states that either resolve 
or perpetuate pathology.

Limitations of this study include the inability of an in vitro 
coculture system to fully recapitulate all aspects of a macrophage 
phenotype found within human synovial tissue. Furthermore, 
although an in vitro assay can measure fibroblast invasiveness, a 
precise understanding of how this translates into fibroblast activity 
within patient synovial tissue is limited. The in vitro and ex vivo 
drug assays have limitations related to differences in how medications 
are processed in cultured cells versus the human body, including 
how drugs are metabolized in the intestinal tract and their stabiliza­
tion upon binding to carrier proteins in the blood, among others. 
Last, the analysis of macrophage responses in the ex vivo tissue 
assay is derived from mixed synovial cell RNA-seq data and thereby 
may be incorporating expression changes from other synovial cell 
types.

Along with the seminal synovial explant assay that provided the 
rationale for use of TNF therapies in RA (48), our work supports the 
implementation of ex vivo assays to better understand and treat 
patients with autoimmune and inflammatory disorders. Specifically, 
in addition to detecting genome-wide established targets of anti-TNF 
and tofacitinib therapies, our RA patient ex vivo synovial tissue 
bioassay provides a human- and disease-relevant system that unmasked 

the interconnectivity and drug responsiveness of the synovial 
macrophage-fibroblast interaction we identified. Human tissue–
based therapeutic testing for autoimmune conditions may offer 
guidance in defining personalized therapies, as the intercellular 
networks driven by the unique cellular composition in a patient’s 
tissue may be exploited in ex vivo assay to indicate how these cells 
cross-regulate after treatment with a medication and collectively 
shape new tissue responses. For RA, this could be accomplished 
with the expanding use of synovial biopsies (21, 22, 66) and ultimately 
with the identification of circulating biomarkers that correlate with 
tissue-based assays. Last, effective blockade of the macrophage-
induced fibroblast response in the RA tissue ex vivo assay with an 
EGFR inhibitor developed for cancer warrants testing of this as 
a new treatment direction, particularly because it may not broadly 
suppress the immune system, unlike many of the current RA 
medications.

MATERIALS AND METHODS
Study design
The objectives of this project were to study macrophage phenotypes 
that are enriched in the joints of patients with the autoimmune disease 
RA using scRNA-seq and to understand how medications affect 
these phenotypes using ex vivo tissue assays. An in vitro coculture 
model system was used to understand how resident synovial cell 
types and pathologic cytokines drive macrophage phenotypes and 
drug responses. Synovial tissue from patients treated for RA and 
OA was used, in addition to blood from healthy human donors. All 
patients were consented under institutional review board (IRB)–
approved studies at Hospital for Special Surgery or clinical sites in 
the Accelerating Medicines Partnership (AMP) consortium. Inclusion 
and exclusion criteria for patients with arthritis were based on stan­
dard clinical diagnostic criteria, such as the ACR 2010 RA criteria. 
Perceived outliers in sequencing datasets from the coculture system 
remained in the analyses upon application of surrogate variable 
analysis by svaseq version 3.26.0. The number of human donor 
blood-derived macrophage biologic replicates depended on the 
robustness of the response for each type of assay and therein the 
variability across donors: For robust assay responses, typically 
about n = 4 donors were used, whereas for assays with higher 
variability, n = 8 donors were used. Individual subject-level data are 
provided in data file S1.

Patient recruitment and CD14+ synovial cell sorting 
for RNA-seq
The multicenter RA/SLE (systemic lupus erythematosus) Network 
of the AMP consortium enrolled individuals meeting the ACR 2010 
RA classification according to protocols approved by the IRB at 
each site (22, 47). Synovial tissues were collected from ultrasound-
guided biopsies or joint replacement surgery and viably frozen in 
CryoStor CS10 cryopreservation media (Sigma-Aldrich). At a central 
processing site, tissues were dissociated and cells were FACS 
(fluorescence-activated cell sorting)–sorted (BD FACSAria Fusion) into 
fibroblast, macrophage, B cell, and T cell populations. Macrophages 
were sorted on the basis of CD14+CD45+ cell surface expression. 
For bulk RNA-seq on CD14+ synovial cell populations, ~1000 cells 
were sorted directly into RNeasy RLT lysis buffer (Qiagen). For CD14+ 
synovial scRNA-seq, ~100 live cells per patient were individually 
plated and lysed in 384-well plates.
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Bulk RNA-seq and scRNA-seq of sorted CD14+ synovial cells
For bulk populations of cells, full-length complementary DNA and 
sequencing libraries were generated using Illumina Smart-Seq2 protocol 
(67). Libraries were sequenced on a MiSeq System (Illumina) to generate 
35–base pair, paired-end reads. scRNA-seq was performed on sorted 
macrophage and synovial fibroblast using the CEL-Seq2 protocol (68) in 
384-well plates. Libraries were sequenced on a HiSeq 2500 (Illumina) 
in rapid run mode to generate 76–base pair, paired-end reads.

CD14+ bulk RNA-seq read alignment and differential gene 
expression analysis
Reads were aligned and quantified with STAR version 2.4.2a (69) 
against the GRCh38 genome and GENCODE Release 27 annotation, 
respectively. Differential expression analyses and batch correction 
were performed using DESeq2 (70) version 1.18.1 and svaseq (71) 
version 3.26.0, respectively.

CD14+ scRNA-seq read alignment and differential 
gene expression analysis
RNA-seq reads were aligned with STAR version 2.5.2b (69) to the 
hg19 reference genome. Transcript levels were quantified as CPM 
using the GENCODE Release 24 annotation. The single-cell gene 
expression matrix was clustered based on a CCA methodology (22). 
Briefly, scRNA-seq and bulk RNA-seq datasets were integrated 
based on the highly variable genes that maximized the correlation 
between the two datasets. The correlated canonical variates were 
then used to construct a nearest-neighbor network, thereby gener­
ating clusters that are verified to be present in the bulk data. Using 
the four clusters identified from the CCA method, the top 10 
canonical coordinates were used to generate a Euclidean distance 
matrix for t-distributed stochastic neighbor embedding (t-SNE) 
visualization using a perplexity parameter of 40. Positive and nega­
tive cluster markers were identified using the Wilcoxon rank 
sum test with a Bonferroni correction for multiple testing.

Pathway analysis
Gene lists were processed for GSEA (72) version 3.0 by taking the 
inverse of the FDR adjusted P value for each gene and multiplying it by 
the sign of the log2 fold change relative to the baseline conditions. 
GSEA was run under the “pre-rank” mode with 1000 permutations for 
each of the gene sets available in MSigDB and ImmunSigDB version 5.2. 
Additional pathway analysis was performed using QIAGEN’s 
Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.
com/ingenuity). Reported pathways were referenced as follows with 
the MSigDB systematic name in parentheses: TNF- signaling via 
NF-B (M5890), IFN- response (M5913), IFN- response (M5911), 
inflammation (M5932), Myc targets (M5926 and M5928), oxidative 
phosphorylation (M5936), translation (M11989), cell cycle (M543), 
induced by EGF (M2613), hypoxia-induced (M5891), IFN-responsive 
genes (M9221), EGFR inhibitor (M16010), and KEGG (Kyoto Encyclo­
pedia of Genes and Genomes) ribosome pathway (M189). Gene sets 
derived from the CD14+ synovial scRNA-seq markers were composed 
of up to 500 genes that exhibited >0.5 log2 fold change (positive marker) 
or <−0.5 log2 fold change (negative marker genes) relative to all other 
clusters, sorted by their fold change.

Independent RA arthroplasty cohort analyzed by Drop-seq
In an independent analysis, we collected synovial tissue from five RA 
patients consented under Hospital for Special Surgery (HSS) RA Studies 

(IRB nos. 2014-317 and 2014–233) during arthroplasty and synovectomy 
procedures. Tissues were dissociated into single-cell preparations, and 
all cells were run through a Drop-seq protocol and sequenced on a HiS­
eq 2500 (Illumina) (31). After cell and gene filtering (31), we applied 
Seurat version 2.3.0 to generate principal components analysis–based 
single-cell clusters, which were labeled on the basis of cell-type markers. 
A total of 20,031 single cells were visualized using the t-SNE implemen­
tation in Seurat using a perplexity parameter of 20 and 13 principal 
components. After identifying a macrophage cluster consistent with 
our previous results (4212 single cells), we reapplied Seurat and identi­
fied distinct subpopulations and visualized in t-SNE space.

Cell culture for human blood–derived macrophages 
and synovial fibroblasts
Human CD14+ monocytes were purified from leukocyte preparations 
purchased from the New York Blood Center and differentiated into 
blood-derived macrophages for 1 to 2 days in macrophage CSF 
(M-CSF; 10 ng/ml) (PeproTech) and RPMI 1640 medium (Life 
Technologies)/10% defined fetal bovine serum (FBS) (HyClone). 
Cells were stimulated with recombinant human TNF (20 ng/ml) 
(PeproTech). Drug treatments were administered 15 min after TNF 
exposure to both the top and bottom wells of the Transwell system 
to achieve the stated final concentrations. After suspending in dimethyl 
sulfoxide according to the company’s instructions, auranofin 
(Sigma-Aldrich) was added to cells at 500 nM, A77 1726 (Santa Cruz 
Biotechnology) was added at 50 M, Tyrphostin AG 1478 
(Sigma-Aldrich) was added at 4 M, GW 627368X (Cayman Chemical) 
was added at 10 M, sulfasalazine (Sigma-Aldrich) was added at 3 M, 
hydroxychloroquine sulfate (Sigma-Aldrich) was added at 50 M, 
methotrexate (Cayman Chemical) was added at 110 M, tofacitinib 
citrate (Cayman Chemical) was added at 1 M (73), and Pam3CSK4 
(InvivoGen) was added at 1000 g/ml. Dexamethasone (Sigma-Aldrich) 
and PGE2 (Sigma-Aldrich) were first suspended in absolute ethanol 
and then added to cells (100 and 280 nM, respectively). Naproxen 
was suspended in RPMI 1640 supplemented with 10% FBS and then 
added to cells at a final concentration of 100 M. Anti-TNF was 
provided as adalimumab and was added to cells at a final concentra­
tion of 50 g/ml.

Human synovial fibroblasts derived from deidentified synovial 
tissues of RA patients undergoing arthroplasty (HSS IRB no. 14-033). 
Dissociated cells were plated in -minimum essential medium 
(-MEM)–based media up to 10 days, washing with media numerous 
times to remove dying blood cell components. Synovial fibroblasts 
at passages 4 to 6 were used for experiments. The diagnoses of RA were 
based on the ACR 2010 criteria. For Transwell culture experiments, 
synovial fibroblasts adhered to polyester chambers with 0.4-m 
pores (Corning) and were suspended above the wells containing 
macrophages, with a fibroblast-to-macrophage ratio of 1:16 on the 
basis of the size of the cells and their coverage of the culture well 
surface. The number of donors used for each experiment is listed in 
the figure legend and refers to unique donors for both the blood-
derived macrophages and the synovial fibroblast lines.

RNA-seq for human blood–derived macrophages 
and synovial fibroblasts
Total RNA was extracted using the RNeasy mini kit (Qiagen). 
TruSeq (nonstranded) sample preparation kits (Illumina) were used 
to purify poly(A) transcripts and generate libraries with multiplexed 
barcode adaptors. Single-end libraries were multiplexed, pooled, 
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and sequenced using the Single Read Clustering with 50 or 100 cycles 
on an Illumina HiSeq 4000. Sequencing was performed by the Weill 
Cornell Medical College Genomics Resources Core Facility. RNA-seq 
read alignment, quantification, differential testing, and pathway 
analysis were performed as described in previous sections.

Fibroblast invasion assay
Human synovial fibroblasts were plated in Transwell inserts with 
macrophages below as described above for the Transwell experiments. 
AG 1478 (Sigma-Aldrich) was added at 4 M for the 32-hour coculture 
incubation. Fibroblasts were trypsinized and replated in 500 l of 
plain -MEM with M-CSF (10 ng/ml) at 0.1 × 106 cells per well into 
24-well Corning BioCoat Matrigel Invasion Chambers. Macrophages 
were resuspended in 750 l of plain -MEM and seeded underneath 
invasion Transwells in the appropriate conditions. AG 1478 was 
added at a concentration of 4 M; after 18 hours, the fibroblasts were 
fixed for 10 min in ice-cold methanol and stained using crystal violet. 
Invasive fibroblast numbers were quantified via light microscopy.

Human RA ex vivo synovial cell assays
For synovial cell cultures, RA patient synovial tissue was obtained 
from patients consented into the HSS FLARE study (IRB no. 2014–233). 
Tissues were digested with Liberase TL (100 g/ml, Roche) and 
deoxyribonuclease I (100 g/ml, Roche) for 15 min and passed 
through three 70 M cell strainers. Cells were then suspended in 
1 ml of red blood cell lysis buffer (gift of J. Lederer, BWH) for 3 min 
followed by addition of RPMI 1640/10% FBS/1% glutamine to 
quench the reaction. Disaggregated synovial cells were plated in 
RPMI 1640/10% FBS/1% glutamine at 0.2 × 106 in 96-well plates. 
Cells were treated with drugs at aforementioned concentrations 
for 24 hours. Supernatants and RNA were collected for Luminex 
experiments and qPCR, respectively. For RNA-seq, the samples 
were multiplexed in eight samples per lane, 50 cycles, single-end 
reads, with TruSeq (Illumina) for library prep and a HiSeq 4000 (Illumina) 
in the Weill Cornell Medical College Genomics Resources Core Facility. 
RNA-seq read alignment, quantification, differential testing, and 
pathway analysis were performed as described in previous sections.

Statistical analysis
scRNA-seq clusters were identified using a graph-based clustering 
method based on CCA (22). Markers for different clusters were 
determined by Bonferroni-corrected Wilcoxon rank sum tests imple­
mented in Seurat version 2.3.0. Visualization of intersecting sets 
was performed using UpSetR version 1.3.3 (74). Testing for differ­
entially expressed genes from bulk RNA-seq count data was performed 
using DESeq2 version 1.18.1 and surrogate variable analysis was 
performed using svaseq version 3.26.0, both run on the R version 
3.3.2. All RNA-seq significance levels are reported as FDR adjusted 
P values. Spearman and Pearson correlation analysis was performed 
using the seaborn statistical data visualization package version 0.8.1 
run on Python version 3.6.4. Statistical significance of pathway anal­
ysis was reported as the normalized enrichment score and FDR adjusted 
P values determined from testing of 1000 permutations from GSEA 
version 3.0. Pathway z scores for upstream regulatory analyses were 
performed using IPA (QIAGEN). Data from in vitro and ex vivo as­
says are shown as mean ± SE unless stated otherwise. Two-tailed 
paired t tests were performed for human sample–derived qPCR and 
ELISA data using GraphPad Prism version 5.04 for Windows. Luminex 
multiplex ELISA experimental data were tested for normality by the 

Shapiro-Wilk test with a significance threshold of P < 0.05 and 
were found to not follow a Gaussian distribution. Subsequent sta­
tistical analysis was thus performed by Wilcoxon signed rank 
tests, a nonparametric method, using GraphPad Prism.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/11/491/eaau8587/DC1
Materials and Methods
Fig. S1. Genes defining the CD14+ single-cell clusters and variance across patient samples.
Fig. S2. Identification of synovial HBEGF+ inflammatory macrophages in an independent RA 
patient study.
Fig. S3. Synovial fibroblasts down-regulate several pathways in TNF-induced macrophages 
and impose a transcriptome consistent with TNF and prostaglandin exposure.
Fig. S4. Synovial fibroblasts express EGF receptors whereas HBEGF+ inflammatory 
macrophages express two EGF ligands.
Fig. S5. Synovial fibroblast exposure modifies how RA medications affect TNF-induced 
macrophages.
Table S1. Patient characteristics for CD14+ synovial single-cell samples.
Table S2. Patient characteristics for CD14+ synovial bulk-sorted samples.
Table S3. RA patient characteristics for the ex vivo synovial tissue assay.
Table S4. Individual patient disease diagnosis, serology, and histology for the ex vivo synovial 
tissue assay.
Data file S1. Individual subject-level data.
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