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antiplasmodial activity of (+) enantiomer (45) and further supports 
that the PfPNP inhibition contributes to the antimalarial activity 
of mefloquine.

DISCUSSION
Plasmodium parasites are characterized by unique biology combin-
ing both animal- and plant-like features and thus remain poorly un-
derstood compared with other eukaryotic systems. Hence, research 
tools developed for studies of drug activities in other eukaryotic sys-
tems have been applied to studying these protozoa with limited suc-
cess (46). As a result, our understanding of the MoAs of the vast 
majority of antimalarial drugs remains fragmentary even for com-
pounds that have been in clinical use for multiple decades (7, 10). 
Here, we explored the CETSA approach for identification of protein 
targets of antimalarial compounds directly in the P. falciparum cells.

In other eukaryotic cellular systems, 
CETSA was proven useful for the identi-
fication of direct drug targets (20, 47, 48), 
downstream effects of the drug-induced 
perturbations (19), and drug resistance 
mechanisms (49) and was also shown to 
be a powerful readout tool in compound 
library screenings (50). Here, we first 
demonstrated its capacity to detect the 
known targets of pyrimethamine and 
E64d in the main malaria pathogen 
P. falciparum. Inhibition of PfDHFR-TS 
was directly linked to the parasiticidal 
effect of pyrimethamine (27, 28), and 
multiple in vitro and clinical studies have 
provided further support for this inter-
action (51–53). This makes the MoA of 
pyrimethamine one of the most well char-

acterized among all antimalarial drugs. Nonetheless, using CETSA, 
we demonstrate that pyrimethamine binds PfDHFR-TS as the only 
target in the proteome covered, resulting in its thermal stabilization 
in the lysate ITDR experiment. However, the ITDR and melt curve 
experiments with pyrimethamine in intact cells yielded no stabiliza-
tion of PfDHFR-TS, illustrating that certain binding scenarios can 
mask CETSA shifts under specific conditions. This could reflect a 
reduced affinity of pyrimethamine to the DHFR active site within the 
cell, being outcompeted by a high-affinity ligand such as folate. Con-
versely, the drug-target engagement in intact cells was demonstrated 
for E64d, a cell-permeable synthetic analog of an epoxysuccinyl-based 
cysteine protease inhibitor E64. E64d is known to be hydrolyzed to 
its active form (E64c) by intracellular esterases before covalently 
binding to the sulfhydryl group at the active site of the target protease 
(54, 55). Accordingly, in the intact-cell ITDR analysis, we demon-
strated that E64d induced thermal stabilization of several predicted 
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Fig. 5. Validation of PfPNP as a target of quinine 
and mefloquine. (A) DSF analysis of PfPNP stabi-
lization by ImmH, mefloquine (MFQ), quinine (QN), 
quinidine (QD), lumefantrine (LUM), chloroquine 
(CQ), and primaquine (PMQ) in a concentration 
gradient (0 to 100  M). The change in PfPNP Tm under 
drug exposure relative to untreated sample is repre-
sented on the y axis in relation to drug concentration. 
(B and C) Sensorgrams, double-referenced binding 
data (black traces) and fitted (blue traces) from SPR 
analysis of PfPNP binding affinity to three drugs. 
ImmH and quinine (B) were analyzed using single-​
cycle experiments and kinetic 1-to-1 model, whereas 
mefloquine (C) was analyzed in a multicycle exper-
iment and fitted using a steady-state model. Meflo-
quine binding isotherm is represented below the 
sensorgram. (D) PfPNP enzymatic activity inhibition 
by quinine and mefloquine across 0 to 50 M and 
0 to 250 M drug concentration gradients, respec-
tively. (E) Fractional inhibitory concentration 50 
(FIC) analysis for the combinations of ImmH with 
mefloquine, quinine, and E64d. Isoboles repre-
senting FIC index of each drug in combination are 
plotted across a range of drug pair concentra-
tions. Reference isobole indicating Loewe addi-
tivity model is presented as a black dashed line.
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cysteine proteases including its previously known targets FP2 and FP3 
(31–33). In addition, the drug interacted with DPAP1, a P. falciparum 
ortholog of mammalian cathepsin C that was also implicated in he-
moglobin catabolism and was shown to be critical for the parasite’s 
asexual growth (56). This illustrates CETSA’s ability to detect the 
drug-target binding that may occur only in the intact-cell setting 
but not in parasite lysate. This may reflect possible prerequisites for 
drug interactions that occur only in the context of an intact cell such 
as drug activation after cell entry, presence of cofactors, or accumu-
lation of a drug at a specific subcellular compartment or an appro-
priate local environment. Consequently, not all drug targets are 
necessarily identified in CETSA analysis, either due to finite depth 
of proteomic analysis or the lack of observable thermal stabilization 
at temperatures or conditions chosen for the experiment. To maxi-
mize the method’s detection capacity for drugs with uncharacter-
ized MoA, it is advantageous to use both lysate- and intact cell–based 
CETSA formats. It is particularly important, considering that not all 
thermal stability shifts are direct results of drug binding, but they can 
also be caused by downstream effects including changes in protein 
stability due to binding of physiological ligands such as metabolites, 
nucleic acids, or proteins. Such shifts could be due to modulation of 
cell signaling, metabolism, or stress pathways induced by the drug. 
Cross-referencing of the lysate and intact-cell CETSA datasets pro-
vides one of the avenues for differentiating between direct and indi-
rect drug effects. Furthermore, the predominantly insoluble nature 
of membrane proteins (57), or their presence in soluble lipid bilayer 
particles generated during cell lysis, results in their limited propen-
sity for observable thermal shifts in the current version of the CETSA 
protocol (21). Future applications of this method for Plasmodium 
parasites might also explore the use of mild detergents (58), aiming 
to increase the coverage of the membrane proteome.

Quinine and mefloquine appear to 
have overlapping MoAs involving multi-
ple biological functions in the Plasmodium 
cell (7) such as hemoglobin endocytosis 
(59) and heme detoxification (60). How-
ever, the two drugs have also been sug-
gested to have unique features, such as 
intercalation with DNA by quinine (61) 
and translation inhibition by mefloquine 
(17). Overall, the MoAs of both drugs 
appear to involve disruption of several 

biological processes simultaneously, but for quinine, no direct pro-
tein targets have been previously identified. Conversely, a direct 
interaction of mefloquine with the 80S ribosome was recently sug-
gested, resulting in attenuation of parasite protein synthesis (17). 
Here, we show that quinine and mefloquine interact with PfPNP in 
the Plasmodium cell and that both drugs have the capacity to inhibit 
PfPNP’s enzymatic activity. Although quinine and mefloquine ex-
hibited comparable thermal stabilization of PfPNP in the initial 
lysate-based CETSA (MDT ~0.1 M for quinine and ~0.6 M for 
mefloquine), in the follow-up studies, quinine exhibited up to three 
orders of the magnitude higher affinity to this enzyme. In particular, 
quinine was able to inhibit PfPNP enzymatic activity with a binding 
constant Ki ~140 nM, which indicates its potential as a clinically 
relevant activity. PfPNP is a dual specificity enzyme important for 
the salvage and recycling of purines (39, 41). However, its relevance 
as an antimalarial target is complicated by the presence of the hu-
man PNP homologue in the RBC in micromolar concentrations, 
which results in the parasite being capable of scavenging its down-
stream metabolic products (62, 63). The disruption of the pfpnp 
gene appears to increase the parasite’s requirement for purines and 
is lethal at physiological hypoxanthine levels in vitro (64). PNP is 
also essential for parasite fitness and pathogenicity in the Plasmodium 
yoelii rodent model (65) but seems nonessential in the Plasmodium 
berghei ANKA model (66). Strong evidence in support of PNP im-
portance as a drug target was generated from a nonhuman primate 
P. falciparum infection model, demonstrating clinical efficacy of orally 
administered DADMe-Immucillin-G, an inhibitor of both human 
and plasmodium PNPs (67). Drug treatment provoked parasite clear-
ance in otherwise lethal infection in Aeotus monkeys, although some 
recrudescence was observed (67). More recently, it was shown that 
prolonged exposure of P. falciparum to sublethal concentrations of 
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Fig. 6. Cocrystal structures of PfPNP with 
quinine and mefloquine. (A) Overlay of PFPNP-
quinine⋅PO4 and PfPNP-mefloquine⋅PO4 cocrys-
tal structures. Quinine is represented as pink 
sticks, mefloquine as green sticks, and the two 
corresponding protein structures in yellow and 
blue, respectively. Oxygen, blue; phosphorus, or-
ange; oxygen, red; fluorine, light cyan. (B) Surface 
representation of both structures, showing hydro-
phobic (red) regions and both ligands bound to 
PfPNP. (C and D) Magnified binding pockets of 
structures presented in (A); major interactions be-
tween ligands and binding pocket amino acids 
are represented by black dashed lines. (E) Fo-Fc 
electron density maps of quinine and mefloquine 
residing within binding pockets of the two co-
crystal structures contoured at 1σ level.
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DADMe-Immucillin-G in vitro results in resistance, mediated by 
point mutations in the catalytic site of PfPNP and the mutant gene 
copy number amplification (68). This study supported previous find-
ings that inhibition of PfPNP is crucial for the antimalarial effect of 
immucillins (39, 40, 69). Another immucillin derivative, MT-ImmH, 
exhibiting 100-fold higher affinity for the parasite enzyme (40) dis-
played an antimalarial median inhibitory concentration (IC50) in in 
vitro assays within the nanomolar range but did not completely at-
tenuate parasite growth below micromolar concentrations (39, 40). 
Together, these reports collectively suggest that the inhibition of 
PfPNP has a high potential for antiplasmodial activity either as a 
direct killing mechanism and/or by decreasing parasite’s fitness. 
The high-affinity binding and inhibition of enzymatic activity sug-
gest that PfPNP may particularly contribute to the MoA of quinine.

The antagonistic interactions observed between the cytotoxic ef-
fects of quinine and mefloquine with ImmH support the notion that 
PfPNP inhibition contributes to their antimalarial activity. However, 
although immucillins exert their antimalarial effect through simul-
taneous inhibition of host and parasite PNP enzymes, we found no 
evidence that quinine and mefloquine interact with human PNP. 
The structure of the binding pocket of two crystal structures re-
solved in this study is very similar to previously described PfPNP 
structures (40, 44). The cocrystal structure of PfPNP-ImmH deter-
mined by Cassera and colleagues (67) revealed a large solvent-filled 
pocket within the enzyme’s active site located near the 5′-hydroxyl 
group of ImmH. This structural feature distinguishes the P. falciparum 
enzyme from its human counterpart, resulting in distinct substrate 
binding specificities between the two (67) and could be responsible 
for the interaction with the quinoline compounds or the lack thereof. 
Nevertheless, we suggest that the described quinine-PfPNP interac-
tion, and possibly the mefloquine-PfPNP interaction, is additive to 
their antimalarial effects rather than representing their dominant 
MoA. Other killing mechanisms might be more pronounced at 
concentrations required to kill the parasite in the in vitro assay con-
ditions. Moreover, in the clinical setting, both quinoline methanols 
remain in circulation for prolonged periods of time either due to a 
very long half-life (mefloquine) or repetitive administration (quinine) 
(11). Hence, the negative impact of a prolonged PfPNP inhibition 
on parasite fitness could also contribute to their therapeutic effect 
in vivo. Moreover, PfPNP was identified as the most prominent tar-
get of quinine in the mid-stage of the Plasmodium intraerythrocytic 
developmental cycle, the trophozoite stage, which is known to be 
highly sensitive to quinine (70). However, we cannot rule out the 
possibility that another therapeutic target of quinine exists in this or 
other stages of the asexual intraerythrocytic development, such as 
the schizonts.

The need of new therapeutics for malaria becomes particularly 
urgent in the light of emerging artemisinin resistance (3). High-
throughput phenotypic screens conducted by collaborative efforts 
of the public and private sectors tested millions of compounds 
yielding tens of thousands of molecules with <1 M activity against 
different developmental stages of P. falciparum (71, 72). One of the 
main remaining challenges is the identification of intrinsic molecular 
targets for the most potent compounds while prioritizing radically 
new chemotypes. New technologies developed for P. falciparum over 
the past few years have enhanced our capacity to identify and vali-
date candidate drug targets. However, MS-CETSA offers several ad-
vantages over existing tools for drug target identification. Its capacity 
to monitor direct biophysical binding to protein targets within a large 

fraction of the parasite proteome simultaneously makes it suitable 
for identification of drug targets of compounds with previously un-
determined modes of action. The label-free principle of CETSA 
allows its usage with the parasite strain of choice and standard un-
modified compounds, thus reducing time and cost required for the 
synthesis of special drug probes. It is our belief that the develop-
ment of MS-CETSA for P. falciparum can complement existing tools, 
facilitating antimalarial drug target discovery efforts, and serve to 
further deepen our understanding of parasite biology.

MATERIALS AND METHODS
Study design
The study was designed to adapt the MS-CETSA method for malar-
ia research and explore its application for stringent identification of 
antimalarial drug targets in the P. falciparum proteome. Initially, we 
used the melt curve MS-CETSA to characterize the thermal dena-
turation behavior of the P. falciparum proteome. Subsequently, we 
provided proof of principle for the drug target identification using 
an ITDR MS-CETSA variant, using two compounds with known 
molecular targets in the P. falciparum proteome: pyrimethamine 
and E64d. We then used ITDR to identify PfPNP as a new binding 
partner of two clinically used compounds: quinine and mefloquine. 
Drug-target interactions were validated and characterized through 
biochemical and cellular studies including DSF, ITC, SPR, enzymatic 
activity assays, antimalarial activity synergy assays, and x-ray crys-
tallography. All CETSA experiments were carried out in two technical 
replicates, whereas biochemical and cellular assays were carried out 
in biological triplicates unless indicated otherwise.

Statistical analysis
In general, all data points are shown in the respective figures. Briefly, 
all CETSA ITDR data were fitted using a sigmoidal (variable slope) 
curve fit. Each protein stabilization profile was evaluated for the 
dose-response curve best-fitting quality (expressed as R2), the level 
of stabilization in heat-challenged condition relative to nondena-
turing conditions of 37°C calculated as the difference in AUC and 
the protein abundance fold change relative to drug-free/dimethyl 
sulfoxide (DMSO)–vesicle condition. The criteria used for high-
confidence stabilization candidates are characterized by R2 ≥ 0.8, 
AUC surpassing three times of MAD of the baseline distribution, 
and fold change ≥1.3 (i.e., 30% change) in the relative protein abun-
dance in at least one drug dose–treated sample relative to a DMSO-
treated sample. Where applicable, further details of statistical analysis 
and the methods used are described elsewhere in Supplementary 
Materials and Methods.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/11/473/eaau3174/DC1
Materials and Methods
Fig. S1. Coaggregation of protein complexes in P. falciparum melt curve CETSA.
Fig. S2. The comparison of protein melting behavior between RBC, P. falciparum, and K562 
cells.
Fig. S3. The effect of pyrimethamine on thermal stability of PfDHFR-TS across four CETSA 
experimental variants.
Fig. S4. Mefloquine-induced stabilization profiles of Mge1 and Hsp70-3 in intact-cell ITDR 
assay.
Fig. S5. Western blot detection of PfPNP stabilization in mefloquine- and quinine-treated ITDR 
datasets.
Fig. S6. Human protein engagement by antimalarial drugs in intact-cell ITDR assays.
Fig. S7. ITC analysis of quinine and mefloquine binding to PfPNP.
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Fig. S8. Cocrystal structure overlay with 2bsx and 1nw4 reference PfPNP structures.
Table S1. High- and low-confidence protein stabilizations observed in quinine/mefloquine 
ITDR assays.
Table S2. SPR measurements of PfPNP-mefloquine/quinine/ImmH KD.
Table S3. ITC binding affinities for PfPNP-mefloquine/quinine interaction.
Table S4. PfPNP in vitro enzymatic activity inhibition by mefloquine and quinine.
Table S5. Combinatory effect of fixed-ratio drug combinations against P. falciparum 3D7 strain.
Table S6. Data collection and refinement statistics of PfPNP-mefloquine and PfPNP-quinine 
cocrystals.
Data S1. Intact-cell and lysate CETSA melt curve analysis of P. falciparum proteome.
Data S2. Intact-cell CETSA melt curve analysis of RBC proteome.
Data S3. PM lysate ITDR–plasmodium proteome.
Data S4. E64d intact-cell ITDR–plasmodium proteome.
Data S5. Quinine lysate ITDR–plasmodium proteome.
Data S6. Mefloquine lysate ITDR–plasmodium proteome.
Data S7. Quinine intact-cell ITDR–plasmodium proteome.
Data S8. Quinine intact-cell ITDR–human proteome.
Data S9. Mefloquine intact-cell ITDR–plasmodium proteome.
Data S10. Mefloquine intact-cell ITDR–human proteome.
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