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MZM enhanced cytotoxicity by TMZ in a BCL-3–dependent manner 
(fig. S7C), whereas the anti-epileptic agent TPM did not (fig. S7D).

Given that ACZ also acts on other CAs, albeit much less effec-
tively (35), we also examined the requirement of CAII for the com-
bination effect of ACZ and TMZ. Knockdown of CAII with si-RNA 
blocked the chemosensitizing effect of ACZ on TMZ (Fig. 7C), and 
overexpression of CAII in cells with low basal BCL-3 promoted chemo-
sensitization by ACZ (fig. S7E). Moreover, in U251 GBM cells that 
do not express CAII, ACZ only chemosensitized these cells to TMZ 
when CAII was exogenously expressed (Fig. 7, D and E). The efficacy 
of ACZ in combination with TMZ raised the question of whether 
ACZ modified NF-B activity and mesenchymal differentiation. ACZ 
did not affect TMZ-induced NF-B inhibitory activity (fig. S7F), and 
the addition of ACZ also did not induce p65 phosphorylation or alter 
MES gene expression (fig. S7, G and H).

To examine combination TMZ and ACZ in vivo, we performed 
intracranial xenograft studies in mice. In a pilot study, U87 tumors 
were established and ACZ was administered for 10 days after initi-
ation of TMZ treatment. This combination regimen did not result 
in a significant change in survival. However, 10 days after TMZ ini-
tiation, CAII expression was still elevated (fig. S7I), suggesting that ACZ 
needed to be administered for a longer period of time. We therefore 
altered our protocol to treat animals with daily ACZ for a total of 21 days. 
Using this regimen, ACZ significantly increased survival time in com-
bination with TMZ compared to TMZ alone (P < 0.05; Fig. 7F and 
fig. S7J). ACZ alone did not affect survival in this model (Fig. 7F).

Next, we replicated the experiments in more clinically relevant 
patient-derived xenograft (PDX) models. In GBM34 and GBM43S 

xenografts that have high BCL-3 expression, addition of ACZ signifi-
cantly increased survival compared to TMZ alone (P < 0.05; Fig. 7, 
G and H). Addition of ACZ to TMZ in GBM43S xenografts resulted in 
long-term survival of several animals, a finding repeatedly seen in 
multiple independent experiments (Fig. 7G and fig. S7L). However, in 
GBM26 PDX that has high MGMT expression, addition of ACZ had 
no chemosensitizing effect on TMZ despite the presence of BCL-3 
in this tumor (fig. S7, K and M). Finally, to specifically examine the 
requirement of BCL-3 for chemosensitization by ACZ in vivo, we 
depleted BCL3 in GBM34 tumors. Whereas expression of a control 
sh-RNA did not modulate the response in GBM34 tumors, knock-
down of BCL3 completely blocked the ability of ACZ to increase the 
prosurvival effect of TMZ (Fig. 7I). Together, these data indicate that 
ACZ, a commonly used CA inhibitor that has no antitumor effect in 
GBM by itself, sensitized GBM to TMZ in a BCL-3–dependent manner.

DISCUSSION
This work identifies BCL-3 as an indicator of sensitivity to alkylating 
chemotherapy in GBM. Although BCL3 expression separated all GBM 
patients, it is primarily informative in tumors with high MGMT pro-
moter methylation. GBM patients with high MGMT promoter meth-
ylation, who would be expected to respond well to alkylating agents, 
had similar survival to those with low MGMT promoter methylation 
if they also had high BCL3 expression. This finding is likely because 
cytotoxic O6-methylguanine adducts are required for BCL-3 to pro-
mote resistance to TMZ. In the presence of high MGMT expression, 
cytotoxic adducts are repaired before they signal to BCL-3 (fig. S8). 
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Fig. 5. BCL-3 promotes p65 nuclear translocation and NF-B dimer exchange. (A) Heatmap representing expression of all MES-specific NF-B target genes [identified 
in (10)] in microarray analysis of U87 cells expressing si-control (Ctrl) or si-BCL3, performed using three separate biological samples. Z score normalized expression is 
graded by color. (B) qPCR (upper) of MES-specific genes in GBM34 GSCs. Data show mean value relative to GAPDH normalized to sh-SCR ± SD (n = 3). Bottom: Representative 
immunoblots in GBM44 and GBM34 GSCs expressing the indicated construct. (C) Correlation between MES-specific genes and BCL3 mRNA in TCGA GBM samples 
(n = 166 for all genes). (D) Relative luciferase activity in U87 cells expressing BCL-3 or EV treated with TNF (5 ng/ml) or vehicle (12 hours). Data show mean value, normalized 
to vehicle-treated EV, ± SD (n = 4). (E) Representative immunoblot using the indicated cellular fractions from U87 cells expressing HA-BCL-3 or EV. (F) Immunoblot analysis with 
the indicated antibody using cytoplasmic and nuclear extract from GBM34 GSCs expressing two separate sh-BCL3 constructs or sh-SCR. Histone 3 (H3) antibody was used as 
nuclear loading control. (G) Representative immunoblot using nuclear fractions from the indicated GSCs and GBM cell lines. (H) Representative IHC images (left) of GBM samples 
from glioma TMAs showing nuclear p65 and BCL-3 staining in two patients. Table (right) shows numbers of tumors in each category. (I) ChIP qPCR in the indicated cells after IP. 
Data represent enrichment at the indicated promoter as a percentage of input ± SD (n = 2). (J) Representative electrophoretic mobility shift assay (EMSA) with CD44 B 
probe using nuclear extracts from U87 cells expressing BCL-3 or EV. Supershift (SS) (right) and competition with specific (SC) or nonspecific (NS) probe (left); OCT1 binding 
confirms equal loading. (K) ChIP qPCR in GSCs after IP with the indicated antibodies. Data represent enrichment at the indicated promoter as a percentage of input ± SD 
(n = 2). *P < 0.05 and **P < 0.01. Pearson correlation analyzed by two-sided Student’s t test. Significance in IHC was calculated using two-sided Fisher’s exact test.
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(N) Clonogenic assay in U87 cells expressing si-control or si-BCL3 with and without si-CAII treated with TMZ (n = 3). *P < 0.05 and **P < 0.01, two-sided Student’s t test.
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BCL-3 was previously found to be elevated in gliomas and related to 
survival (42); however, in that study, patients with all grades of glioma 
were analyzed together, precluding determination of prognostic value. 
Our results indicate that only tumors with low BCL3 expression will 
likely benefit from adding TMZ to IR, an important clinical obser-
vation given that TMZ induces deleterious hypermutation that can 
cause malignant progression (43).

The data demonstrate that, in glioma, BCL3 expression is regulated 
by genetic, and epigenetic, modifications and that these alterations are 
linked to patient outcome. We see that BCL3 CN loss occurs as a result 
of modifications targeted to the chromosomal band 19q13. This finding, 
when considered with the observation that BCL-3 is a candidate onco
protein that has never been identified as a glioma driver (4), indicates that 
BCL3 loss is a passenger event unrelated to glioma formation. Although 

the ability of passenger events to promote unintended therapeutic sus-
ceptibility has been shown in animal models (44, 45), the link between 
loss of BCL3 and TMZ susceptibility demonstrates the importance of 
passenger modification to chemosensitivity in a clinical setting. The ef-
fect of BCL3 deletion in glioma is particularly relevant given that alter-
ations of 19q play an important role in modulating patient outcome in 
these tumors. Specifically, 19q, with 1p, co-deletion is predictive of re-
sponse to alkylating chemotherapy in oligodendroglioma (46), whereas 
loss of 19q13 alone is associated with long-term survival in GBM (29, 47). 
The most widely accepted hypothesis as to why 19q13 loss is so preva-
lent in gliomas is that a glioma-specific tumor suppressor is present in 
the region (48). Although no 19q tumor suppressor has yet been iden-
tified in astrocytic tumors or GBM, capicua transcriptional repressor 
(CIC) was recently discovered in oligodendroglioma (49).
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Fig. 7. ACZ chemosensitizes GBM xenografts to TMZ. (A and B) Trypan blue assays at 72 hours in (A) GBM34 GSCs expressing sh-BCL3 or sh-SCR or (B) GBM44 GSCs 
expressing BCL-3 or EV treated with TMZ and/or 100 M ACZ as indicated. Data show fold change in percent dead cells relative to cells transfected with EV, or sh-SCR, 
treated with vehicle, ± SD (n = 3). (C) Clonogenic assay in U87 cells expressing si-CAII or si-control treated with 50 M TMZ with or without 100 M ACZ. Data show surviv-
ing fraction relative to TMZ alone ± SD (n = 3). (D) PCR analysis of CAII mRNA and immunoblot analysis of CAII protein in U87 and U251 cells expressing si-control or si-CAII. 
Clonogenic assay (right) in U251 cells treated with 100 M TMZ and/or 100 M ACZ (n = 3). (E) Clonogenic assay in U251 cells stably expressing CAII or EV treated with TMZ 
and/or 100 M ACZ (n = 3). (F) Kaplan-Meier curves of mice bearing intracranial U87 tumors (n = 5 per group) treated with TMZ on days 5, 7, and 9 (5 mg/kg per dose) and/or 
ACZ on days 5 to 26 (15 mg/kg per day). (G) Kaplan-Meier curves of mice bearing intracranial GBM43S PDX (n = 7 per group) treated with TMZ on days 5, 7, and 9 (5 mg/kg 
per dose) and/or ACZ on days 5 to 26 (15 mg/kg per day). (H) Kaplan-Meier curves of mice bearing intracranial GBM34 PDX (n = 7 per group) treated with TMZ on days 5, 7, 
and 9 (10 mg/kg per dose) and/or ACZ on days 5 to 26 (15 mg/kg per day). (I) Kaplan-Meier curves of mice bearing intracranial GBM34 PDX tumors stably expressing either 
sh-BCL3 (n = 6 per group) or sh-SCR (n = 5 per group) treated with TMZ on days 5, 7, and 9 (10 mg/kg per dose) and/or ACZ on days 5 to 26 (15 mg/kg per day). Inset: 
Immunoblot of cells from the indicated tumors. *P < 0.05 and **P < 0.02.
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Our studies indicate that BCL-3 promotes GBM mesenchymal dif-
ferentiation, an observation consistent with previous reports linking 
BCL-3 to EMT (50–52). We find that, in GBM cells, BCL-3 up-regulated 
EMT markers and that, in clinical GBM, BCL3 expression correlated 
strongly with MES signature gene expression. From a mechanistic 
standpoint, high BCL-3 led to a change in the composition of the 
NF-B dimer at MES gene promoters involving replacement of p50 by 
p52. In addition, BCL-3 induced p65 nuclear translocation, a finding 
consistent with the known importance of this subunit in MES change 
(10). Whereas previous work demonstrates a cell-extrinsic pathway for 
activation of p65 in GBM cells by cytokines released from infiltrating 
macrophages and microglia (10), genetic and epigenetic regulation of 
BCL3 represents mechanisms by which cell-intrinsic pathways also con-
tribute to promoting NF-B–dependent mesenchymal differentiation.

An important feature of predictors like BCL-3 is that they are also 
informative in that they can identify pathways to improve treatment 
response. MGMT promoter methylation is one such predictor; how-
ever, inhibiting MGMT has not proven to be an effective chemosen-
sitizing strategy clinically (8). Inhibition of BCL-3 is not currently 
feasible in patients; therefore, we searched for downstream BCL-3–
regulated targets and identified CAII as a mediator of BCL-3–dependent 
resistance to TMZ. Although several factors have previously been re-
ported to contribute to the antiapoptotic effects of BCL-3 (53–55), 
from a clinical perspective, CAII stands out because it can be effec-
tively inhibited by ACZ. CAII mRNA expression is not prognostic in 
untreated GBM (GlioVis data portal) (32), yet elevated endothelial 
CAII has been associated with worse outcome in astrocytoma (56). 
Regardless of these observations, our data demonstrate that it is not 
basal expression but the induction of CAII by TMZ that is important 
in modulating response to therapy.

Although we demonstrated the predictive value of BCL3 in several 
independent data sets, an important limitation of our study is its ret-
rospective nature. Ultimately, the clinical validity of using BCL-3 as a 
predictor in GBM will require verification in a prospective randomized 
trial. In addition, the question of which CA inhibitor is best for clinical 
use with TMZ will require further analysis. Finally, a mechanistic limita-
tion of our study is that we have yet to determine how BCL-3 promotes 
p65 nuclear translocation and promoter-specific dimer exchange.

ACZ has not previously been examined in GBM xenografts; how-
ever, it was initially shown to promote chemosensitization in murine 
fibrosarcoma (57). More recently, ACZ was found to promote cyto-
toxicity of GBM cells in vitro and other cancers in vivo (37–39, 58). 
Although there has been significant interest in targeting other hypoxia-
specific CA isoforms for GBM therapy (41, 59), ACZ is attractive be-
cause of its general clinical use and well-tolerated dosing profile (40). 
Using PDXs, we see that, in GBM, ACZ promoted chemosensitization 
specifically in the presence of high BCL-3 and low MGMT expression. 
Our studies suggest that, in the clinical setting, repurposing ACZ might 
be particularly effective in a subgroup of MGMT promoter methylated 
tumors that have high BCL-3 expression. Given the increase in mo-
lecular analysis of gliomas, factors such as BCL-3 might assume an 
important role in individualizing patient treatment, a strategy occur-
ring with increasing frequency in cancer therapy.

MATERIALS AND METHODS
Study design
The objectives of this study were to examine the role of BCL-3 in the 
response of glioma to alkylating chemotherapy and to evaluate the 

use of ACZ as a chemosensitizer in experimental GBM. There are 
several design aspects relevant in this work. First, to examine the pre-
dictive role of BCL3, initially, TCGA was examined and the results 
were subsequently validated in other databases. Numbers of patients 
included or excluded in each data set are specifically noted in Materials 
and Methods and in each individual figure panel. To investigate sur-
vival based on BCL-3 IHC, we performed an initial power analysis 
based on the mRNA data from TCGA. This gave n = 74 and 32 patients 
per group, respectively, to have 80% power to detect a significant 
difference between low and high BCL-3 expression at a two-sided 
P < 0.05. Subsequently, after institutional review board approval, we 
obtained 86 consecutive GBM samples that had adequate tissue for 
IHC. Additional patients were not recruited. Patients were excluded 
from survival analysis if they died before treatment due to infection or 
massive hemorrhage, if no follow-up was available, or if they initially 
had an LGG that progressed to GBM. IHC and FISH grading was 
performed by two independent investigators blinded to diagnosis 
and to survival.

For animal studies, no statistical method was used to determine 
sample size. Efforts were made to achieve the scientific goals with 
the minimum number of animals. A sample size of five to seven ani-
mals per group was chosen on the basis of our previous experience 
using intracranial PDX GBMs, where we have observed 100% tumor 
engraftment success. After tumor implantation and before treatment, 
animals were randomized into the different treatment groups. Animals 
were excluded from the study if they were sacrificed before treatment/
randomization. Determination of the survival time was performed 
blinded to the specific treatment group. Experiments were repeated by 
more than one individual to ensure reproducibility. The survival end-
point was reached when mice lost at least 20% body weight or showed 
symptoms of neurological deficit. Raw data are located in table S17.

Statistical analysis
Data analysis was performed using Stata/IC 13.0 statistical software 
(Stata Corporation, licensed to the University of Chicago, Research 
Computing Center). The Cox proportional hazard model was used 
for both univariate and multivariate analyses using the specific co-
variates noted in Results. For survival studies, Kaplan-Meier curves 
were plotted, and the log-rank test was performed for comparison of 
cohorts. HR and 95% CIs were calculated using the Mantel-Haenszel 
estimator model. For analysis of 19q CN correlation, correlation 
matrix analysis was used, and the R/corrplot package was used to 
display the correlation matrix. For box-and-whisker graphs, boxes 
show median and 25th and 75th percentiles, whereas whiskers show 
the 5th and 95th percentiles analyzed by unpaired t test. In vitro and 
other studies as indicated were analyzed by two-tailed Student’s t test 
with significance taken as P < 0.05. Pearson correlation was also ana-
lyzed by two-tailed Student’s t test.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/10/448/eaar2238/DC1
Methods
Fig. S1. BCL3 predicts response to alkylating chemotherapy in GBM.
Fig. S2. BCL3 is relevant in LGGs and pan-glioma patients.
Fig. S3. Loss of BCL3 is a passenger event associated with survival.
Fig. S4. BCL-3 induces mesenchymal differentiation.
Fig. S5. BCL-3 promotes p65 nuclear translocation and NF-B dimer exchange.
Fig. S6. CAII mediates BCL-3–dependent resistance to TMZ.
Fig. S7. ACZ chemosensitizes GBM xenografts to TMZ.
Fig. S8. Model demonstrating role of BCL-3 in promoting resistance to TMZ.
Table S1. Molecular profile of GBM cell lines.
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Table S2. Cox regression analysis using different cutoff points for BCL3 expression in TCGA 
GBM patients.
Table S3. Multivariate Cox regression analysis in TCGA GBM patients treated with and without 
alkylating chemotherapy (TMZ).
Table S4. Clinical features of University of Chicago GBM patients.
Table S5. Cox regression analysis using different BCL3 expression cutoff points in TCGA LGG 
patients.
Table S6. Cox regression analysis in TCGA LGG patients with and without alkylating 
chemotherapy.
Table S7. Multivariate Cox regression analysis in patients from EORTC 26951 treated either 
with or without alkylating chemotherapy.
Table S8. Cox regression analysis of TCGA pan-glioma patients who received alkylating 
chemotherapy.
Table S9. Multivariate Cox regression of TCGA pan-glioma patients incorporating BCL3 CN.
Table S10. Multivariate Cox regression of TCGA pan-glioma patients incorporating BCL3 
promoter methylation.
Table S11. Correlation between BCL3 mRNA expression and the expression of each MES or PN 
signature gene in TCGA GBM patients.
Table S12. Genes that are up- and down-regulated (at least 1.5-fold) in U87 cells expressing 
si-BCL3 relative to those expressing si-control (see separate Excel file).
Table S13. Genes that are significantly (adjusted P < 0.05) up- and down-regulated in U87 cells 
expressing si-BCL3 or si-control after treatment with TMZ compared to vehicle (see separate 
Excel file).
Table S14. Oligonucleotides (oligos) for EMSA.
Table S15. ChIP primers and target gene B sites.
Table S16. Oligonucleotide sequences for qPCR.
Table S17. Raw data (see separate Excel file).
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suggest that analysis of BCL3 expression might be useful in determining the best therapy for treating gliomas.
inhibitor acetazolamide increased sensitivity to TMZ and survival in the mouse xenograft model. The results
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BCL3-expressing gliomas showed a poorer response to TMZ and shorter survival than did patients with low
(BCL3) expression promoted resistance to TMZ by activating carbonic anhydrase II. Patients with high 

. now report that high B cell CLL/lymphoma 3et algliomas, but many patients do not respond to the treatment. Wu 
Chemotherapy with alkylating agents, including temozolomide (TMZ), is the most effective treatment for

BCL3 dampens drug efficacy in gliomas
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