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Preexisting serological memory affected the magnitude of the 
serological response, and individuals who did not seroconvert had 
higher HAI titers at baseline than seroconverters, consistent with pre-
vious observations (17, 30). The mechanism is unclear, but others sug-

gested that preexisting antibodies mask or block antigenic epitopes on 
HA and/or induce the formation of immune complexes, which could 
aid antigen clearance, thus limiting the B cell response (17, 31). We 
found an effect of serum titers at baseline on the magnitude of CD21lo 

Fig. 8. Influenza-specific B cells 
show distinct patterns of tis-
sue compartmentalization. 
(A) Frequency of CD19+CD10− 
B cells across human tissues. 
(B) CD21/CD27 phenotype and 
(C) isotype of B cells across tis-
sues. (D) Frequency of rHA+ (H1/
H3) IgD− B cells across tissues. 
(E) Phenotype distribution and 
(F) isotype distribution of rHA+ 
B cells across tissues. For isotype 
distributions, the frequency of 
each isotype was normalized 
to the sum of all three isotypes. 
(G) Representative FACS plots 
are shown. (A and D) Bars indi-
cate median. (B, C, E, and F) Lines 
indicate mean, and error bars 
show SEM. Adult blood, n = 5; 
cord blood, n = 5; bone marrow, 
n = 5; tonsil, n = 5; lymph node, 
n = 3; lung, n = 3; spleen, n = 7. 
(H) PBMCs from paired blood 
and spleen samples were ana-
lyzed. Frequency of each CD21/
CD27 population within total 
B cells for each blood and spleen 
pair (n = 5) is shown. Significance 
was assessed using a paired t test 
(*P < 0.05; **P < 0.005). ND, not 
determined.
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B cells on d14, although this was only observed for IBV. It is also pos-
sible, however, that seroconversion (fourfold change in titers) is harder 
to detect in individuals with preexisting high titers.

Despite the substantial effects of IIV on the B cell and CD4+/TFH 
compartments, other T cell populations were apparently unaffected. 
Specifically, IAV- and IBV-specific CD8+ T cells were unaffected in 
frequency and phenotype. Whether this is due to antigen content, in-
adequate inflammation, or lack of cross-presentation in the absence of 
viral replication is unclear. Given the prominent role of CD8+ T cells 
in cross-protective immunity (4–6), even against antigenically shifted 
strains like avian H5N1 (32) and H7N9 (6, 33), vaccines that establish 
CD8+ T cells are of considerable importance.

Although vaccination induced robust humoral immunity, the B cell 
response was not maintained in peripheral blood over time. This like-
ly reflects the expected contraction of B cells and their migration to 
lymphoid tissues. Although we cannot infer the relative contribution of 
contraction and tissue compartmentalization in the observed loss of 
memory B cells from blood, nor do we know the vaccination and infec-
tion history of our donors, our data indicate that memory B cells are 
enriched in tissues compared to blood. Accordingly, vaccination in 
consecutive years induced earlier and larger B cell responses, despite 
disappearance of vaccine-induced memory from blood. Similarly, ro-
bust memory responses were detected after vaccination following B cell 
depletion by rituximab, implying the presence of memory reservoirs in 
tissues (34). Our data agree with reports on compartmentalization of 
human virus-specific memory B cells in the spleen (35) and distribu-
tion of influenza-specific memory B cells across tissues in mice (36). 
Our analysis supports the notion that the assessment of long-term vac-
cine effectiveness in blood may be suboptimal. Notably, our study sug-
gests that vaccine design needs to consider the localization of memory 
B cells and the fact that vaccination route affects the B cell response to 
vaccination (37).

Together, we show that activation of cTFH cells, serological memory, 
and tissue compartmentalization are key factors in human antigen-
specific B cell responses. Our study has implications for the design 
of effective vaccines against influenza viruses and highlights ave-
nues for further research. Specifically, determining ways to activate 
cTFH cells and CD8+ T cells is of utmost importance. It would be per-
tinent to understand whether and how the limiting effects of preex-
isting antibodies on the B cell response can be overcome. Differential 
compartmentalization of influenza-specific B cell subsets across hu-
man tissues and the prominent presence of memory B cells in the lung 
should be considered with regard to the vaccination route because 
intranasal vaccination might be more effective in stimulating the 
influenza-specific memory pool. Further understanding the fate of 
each B cell population after vaccination will be fundamental to estab-
lishing long-lasting serological and cellular immune memory to in-
fluenza viruses.

MATERIALS AND METHODS
Study design
This study aimed to dissect the influenza-specific B and T cell responses 
after vaccination with split inactivated influenza viruses and across human 
tissues. To that end, 35 healthy adults (>18 years old) were vaccinated 
over 3 years (2014 to 2016) with the trivalent influenza vaccine (2014, 
n = 7; 2015, n = 16) or the 2016 quadrivalent influenza vaccine (2016, 
n = 26), with selected individuals participating in consecutive years 
(table S1). Peripheral blood samples were collected in heparinized tubes 

before vaccination (d−1 or d0) and on d7, d14, and d28 after vaccina-
tion. For individuals participating in both 2015 and 2016 years, the 2016 
baseline sample was used as the 1-year time point (>350 days). Influenza-
specific B cells were identified using rHA probes and flow cytometry. 
ASCs and serum antibody titers were assessed in all three cohorts. cTFH 
and influenza-specific B cells were assessed in the 2015 and 2016 co-
horts. Cellular immunity was assessed in selected donors from the 2014 
to 2015 cohort. One donor in the 2016 cohort reported feeling unwell 
with symptoms of unrelated sickness, and those samples were excluded 
from analysis. In cases where less than the total number of donors was 
analyzed, donors were randomly selected for analysis. No other blind
ing or randomization protocols were applied, and no outliers were ex-
cluded. Primary data are reported in table S9.

Human blood and tissue samples
Human experimental work was conducted according to the Declaration 
of Helsinki Principles and to the Australian National Health and Med-
ical Research Council (NHMRC) Code of Practice. Signed informed 
consent was obtained from all blood and tissue donors before the study. 
Tissues from deceased organ donors were obtained after written in-
formed consent from the next of kin. The study was approved by the 
University of Melbourne Human Ethics Committee (ID 1443389.3 and 
1443540), the Mercy Health Human Research Ethics Committee (ID 
R14/25), and the Australian Red Cross Blood Service (ARCBS) Ethics 
Committee (ID 2015#8).

Spleen, lung, and lymph node samples were obtained from de-
ceased organ donors. Spleen and lymph node samples were obtained 
via DonateLife Victoria (table S2). Lung samples were obtained via the 
Alfred Hospital’s Lung Tissue Biobank. Tonsils were obtained from 
healthy individuals undergoing tonsillectomy (Mater Hospital). PBMCs 
were isolated from buffy packs obtained from the ARCBS. Umbilical 
cord blood was obtained via the Mercy Women’s Hospital. Bone mar-
row mononuclear cells, isolated from the posterior ileac crests of healthy 
volunteers, were commercially purchased (Lonza).

Statistical analysis
Significance was assessed using Wilcoxon matched-pairs signed-rank 
test (for changes from baseline) or Friedman test (for comparisons 
between multiple time points). Mann-Whitney test was used to com-
pare unpaired samples, and a paired t test was used to compare paired 
tissue samples. Correlations were assessed using Spearman’s correla-
tion coefficient (rs) for non-Gaussian distributions.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/10/428/eaan8405/DC1
Fig. S1. Gating strategy for circulating ASCs and activated cTFH1 cells.
Fig. S2. Specific activation of cTFH1 cells after IIV.
Fig. S3. Gating strategy for influenza-specific B cells in PBMC.
Fig. S4. Validation of rHA probe staining.
Fig. S5. BCR analysis of single rHA+ B cells.
Fig. S6. Frequency of IgA+ cells in IgG−IgD−IgM−rHA+ B cells in healthy adults.
Fig. S7. Numbers of isotype-specific rHA+ (H3N2/Swi) B cells.
Fig. S8. rHA+ B cell kinetics by ELISPOT.
Fig. S9. CD20 expression by CD21loCD27+ B cells and ASCs.
Fig. S10. Gating strategy for ex vivo live virus ICS.
Fig. S11. Vaccination does not induce CD8+ and innate T cell responses.
Fig. S12. Gating strategy for T cell phenotyping.
Fig. S13. Fold change in influenza-specific B cells during repeated vaccination.
Fig. S14. Validating of rHA probes in human tissues.
Fig. S15. B cell isotype distributions in paired tissue samples.
Table S1. Details of vaccination cohorts.
Table S2. Cohorts of human tissues.
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Table S3. FACS panel for ASCs and cTFH cells.
Table S4. FACS panel for influenza-specific T cells after influenza virus infection.
Table S5. FACS panel for phenotyping T cells after vaccination.
Table S6. FACS panel for influenza-specific B cells in 2015 cohort.
Table S7. FACS panel for influenza-specific B cells in 2016 cohort.
Table S8. FACS panel for influenza-specific B cells in human tissues.
Table S9. Primary data.
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response exists outside the circulation. Better targeting these cells could improve influenza vaccine efficacy.
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