Research ArticleALLERGY

A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders

See allHide authors and affiliations

Science Translational Medicine  02 Aug 2017:
Vol. 9, Issue 401, eaam9171
DOI: 10.1126/scitranslmed.aam9171

Defining damaging cells

Although T helper type 2 (TH2) cells provide necessary protection from certain types of pathogens, they are also implicated in allergy pathogenesis. Until now, methods to distinguish pathogenic cells that are reactive to allergens from the rest of the TH2 population were very limited. Wambre et al. characterized a population of memory TH2 cells, termed TH2A, that were only found in allergic individuals. They were able to do so without the use of antigen-specific tetramers. These cells decreased in patients that benefited from allergen immunotherapy, indicating that targeting TH2A cells could disrupt allergic responses.


Allergen-specific type 2 helper T (TH2) cells play a central role in initiating and orchestrating the allergic and asthmatic inflammatory response pathways. One major factor limiting the use of such atopic disease–causing T cells as both therapeutic targets and clinically useful biomarkers is the lack of an accepted methodology to identify and differentiate these cells from overall nonpathogenic TH2 cell types. We have described a subset of human memory TH2 cells confined to atopic individuals that includes all allergen-specific TH2 cells. These cells are terminally differentiated CD4+ T cells (CD27 and CD45RB) characterized by coexpression of CRTH2, CD49d, and CD161 and exhibit numerous functional attributes distinct from conventional TH2 cells. Hence, we have denoted these cells with this stable allergic disease–related phenotype as the TH2A cell subset. Transcriptome analysis further revealed a distinct pathway in the initiation of pathogenic responses to allergen, and elimination of these cells is indicative of clinical responses induced by immunotherapy. Together, these findings identify a human TH2 cell signature in allergic diseases that could be used for response-monitoring and designing appropriate immunomodulatory strategies.

View Full Text

Stay Connected to Science Translational Medicine