Research ArticleCancer

Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

See allHide authors and affiliations

Science Translational Medicine  05 Apr 2017:
Vol. 9, Issue 384, eaai8504
DOI: 10.1126/scitranslmed.aai8504

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

ROCK-ing pancreatic cancer to the core

Pancreatic cancer, one of the most deadly and difficult-to-treat tumor types in patients, usually has a dense stroma that can be difficult for drugs to penetrate. Stromal characteristics can also affect multiple other aspects of tumor biology, including metastatic spread, vascular supply, and immune response. Vennin et al. used Fasudil, a drug that inhibits a protein called ROCK and is already used for some conditions in people, to demonstrate the feasibility including short-term tumor stroma remodeling as part of cancer treatment. In genetically engineered and patient-derived mouse models of pancreatic cancer, priming with Fasudil disrupted the tumors’ extracellular matrix and improved the effectiveness of subsequent treatment with standard-of-care chemotherapy for this disease.


The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.

View Full Text

Stay Connected to Science Translational Medicine