You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
A repurposed drug for neuroinflammatory disease
Treatment of inflammation-associated progressive neurodegenerative disorders, such as relapsing remitting multiple sclerosis, is challenging. In a new study, Mykicki et al. demonstrate that the drug NDP-MSH, currently approved for treating porphyria, showed potent anti-inflammatory and neuroprotective effects in two mouse models of neuroinflammatory disease. The drug, acting via the melanocortin-1 and orphan nuclear 4 receptors, prevented neuronal cell death by inducing regulatory T cells and preventing the infiltration of pathogenic T cells into the central nervous system.
Abstract
In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (TH1) and TH17 cells cause demyelination and neuronal degeneration. Regulatory T cells (Treg) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, Treg function is impaired. We show that a recently approved drug, Nle4-d-Phe7–α-melanocyte–stimulating hormone (NDP-MSH), induced functional Treg, resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders.
- Copyright © 2016, American Association for the Advancement of Science