You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Advanced analysis of asthma
Not all individuals who have respiratory reactions to allergens progress to asthma. In this issue, Cho et al. found that although allergic asthmatics and allergic nonasthmatics both experienced inflammation after allergen challenge, asthmatics had more mucin and type 2 cytokines, and allergen-specific T cells sampled from the airspace had increased innate type 2 receptors. Using orientation-resolved optical coherence tomography, described by Adams et al., they demonstrated that allergic asthmatics also had increased airway smooth muscle mass. This technique allows for in vivo imaging of airway smooth muscle structure and function, which could shed light on the pathogenesis of many respiratory diseases.
Abstract
The inability to visualize airway smooth muscle (ASM) cells in vivo is a major obstacle in understanding their role in normal physiology and diseases. At present, there is no imaging modality available to assess ASM in vivo. Confocal endomicroscopy lacks the penetration depth and field of view, and conventional optical coherence tomography (OCT) does not have sufficient contrast to differentiate ASM from surrounding tissues. We have developed a birefringence microscopy platform that leverages the micro-organization of tissue to add further dimension to traditional OCT. We have used this technology to validate ASM measurements in ex vivo swine and canine studies, visualize and characterize volumetric representations of ASM in vivo, and quantify and predict ASM contractile force as a function of optical retardation. We provide in vivo images and volumetric assessments of ASM in living humans and document structural disease variations in subjects with mild asthma. The opportunity to link inflammatory responses to ASM responses and to link ASM responses to clinical responses and outcomes could lead to an increased understanding of diseases of the airway and, ultimately, to improved patient outcomes.
- Copyright © 2016, American Association for the Advancement of Science