Research ArticleLysosomal Storage Diseases

Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses

See allHide authors and affiliations

Science Translational Medicine  07 Sep 2016:
Vol. 8, Issue 355, pp. 355ra118
DOI: 10.1126/scitranslmed.aad9823

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Heat shock protein to the rescue

The sphingolipidoses constitute a major subgroup of lysosomal storage diseases, a class of inherited metabolic disorders characterized by severe systemic and neurological problems. Few therapeutic options exist for treating these disorders. Kirkegaard et al. now demonstrate that increasing the expression of the molecular chaperone HSP70 through administration of either recombinant human HSP70 or the clinically tested, orally available small-molecule arimoclomol ameliorated disease manifestations, including brain pathology, in several different animal models of sphingolipidoses.


Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla−/−), Sandhoff disease (Hexb−/−), and Niemann-Pick disease type C (Npc1−/−) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb−/− and Npc1−/− mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein–based therapies merit clinical evaluation for treating LSDs.

View Full Text

Stay Connected to Science Translational Medicine