Research ArticleFibrosis

A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies

See allHide authors and affiliations

Science Translational Medicine  02 Mar 2016:
Vol. 8, Issue 328, pp. 328ra30
DOI: 10.1126/scitranslmed.aad7666

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

SRC shows its stripes

The nonreceptor tyrosine kinase SRC is a proto-oncogene that has been associated with cancer progression. Now, Turro et al. find a gain-of-function mutation in SRC in nine patients with myelofibrosis, bleeding, and bone disorders. This mutation prevented SRC from inhibiting itself, and the overactive SRC resulted in enhanced tyrosine phosphorylation in a zebrafish model as well as in patient-derived cells. In patients with myelofibrosis, this SRC mutation was associated with increased outgrowth of myeloid and megakaryocyte colonies, with abnormal platelet production, which could be rescued by SRC kinase inhibition. These findings may be important for understanding the severe bleeding in cancer patients treated with Src family kinase inhibitors.


The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC’s self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients’ platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC–positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients’ blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.

View Full Text

Stay Connected to Science Translational Medicine