You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Stemming the progression of cancer
LGR5 is a well-known marker of intestinal cancer stem cells, which makes it an attractive target for anticancer treatments. Unfortunately, it is also found in healthy intestinal stem cells, giving rise to concerns about the potential toxicity of such treatments. Now, Junttila et al. used preclinical models of intestinal cancer to demonstrate that targeting LGR5 with an antibody-drug conjugate is effective for shrinking tumors without damaging the surrounding normal tissues. These observations of preclinical effectiveness as well as safety suggest that targeting LGR5-expressing cells may be a viable therapeutic strategy and a candidate for evaluation in human studies.
Abstract
Cancer stem cells (CSCs) are hypothesized to actively maintain tumors similarly to how their normal counterparts replenish differentiated cell types within tissues, making them an attractive therapeutic target for the treatment of cancer. Because most CSC markers also label normal tissue stem cells, it is unclear how to selectively target them without compromising normal tissue homeostasis. We evaluated a strategy that targets the cell surface leucine-rich repeat–containing G protein–coupled receptor 5 (LGR5), a well-characterized tissue stem cell and CSC marker, with an antibody conjugated to distinct cytotoxic drugs. One antibody-drug conjugate (ADC) demonstrated potent tumor efficacy and safety in vivo. Furthermore, the ADC decreased tumor size and proliferation, translating to improved survival in a genetically engineered model of intestinal tumorigenesis. These data demonstrate that ADCs can be leveraged to exploit differences between normal and cancer stem cells to successfully target gastrointestinal cancers.
- Copyright © 2015, American Association for the Advancement of Science