Research ArticleBioengineering

Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle

See allHide authors and affiliations

Science Translational Medicine  18 Nov 2015:
Vol. 7, Issue 314, pp. 314ra183
DOI: 10.1126/scitranslmed.aac6522

Particle prediction

One particle, it seems, can predict the behavior of another. Thankfully, this is not the beginning of a lesson on quantum physics; instead, it is the basis for potentially designing targeted clinical trials in nanomedicine, by knowing if a tumor is likely to respond to a particular therapeutic nanoparticle. Miller et al. hypothesized that if a tumor readily takes up magnetic nanoparticles (MNP), it will also accumulate other nanoparticles carrying a deadly payload. The authors injected MNPs and a fluorescent version of the therapeutic nanoparticles into mice and followed their biodistribution using imaging. Both types of nanoparticles had similar pharmacokinetics and uptake in tumor-associated host cells owing to the enhanced permeability and retention effect. In mice with human tumors, Miller and colleagues found that the tumors with high MNP uptake were significantly more responsive than those with medium or low uptake to nanoparticles delivering chemotherapeutics. Thus, MNPs can be used as companion imaging agents during nanomedicine trials to predict the therapeutic effect of their nanosized counterparts.

View Full Text