You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The therapeutic effects of centrally acting pharmaceuticals can manifest gradually and unreliably in patients, making the drug discovery process slow and expensive. Biological markers providing early evidence for clinical efficacy could help prioritize development of the more promising drug candidates. A potential source of such markers is functional magnetic resonance imaging (fMRI), a noninvasive imaging technique that can complement molecular imaging. fMRI has been used to characterize how drugs cause changes in brain activity. However, variation in study protocols and analysis techniques has made it difficult to identify consistent associations between subtle modulations of brain activity and clinical efficacy. We present and validate a general protocol for functional imaging–based assessment of drug activity in the central nervous system. The protocol uses machine learning methods and data from multiple published studies to identify reliable associations between drug-related activity modulations and drug efficacy, which can then be used to assess new data. A proof-of-concept version of this approach was developed and is shown here for analgesics (pain medication), and validated with eight separate studies of analgesic compounds. Our results show that the systematic integration of multistudy data permits the generalized inferences required for drug discovery. Multistudy integrative strategies of this type could help optimize the drug discovery and validation pipeline.
- Copyright © 2015, American Association for the Advancement of Science