Research ArticleCancer Imaging

Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging

See allHide authors and affiliations

Science Translational Medicine  21 Jan 2015:
Vol. 7, Issue 271, pp. 271ra7
DOI: 10.1126/scitranslmed.3010633

Seeing Nanostars

Microscopic tumors may be difficult for the naked eye to see, but they are no match for nanosized imaging agents, which home in on cancerous tissues to signal the presence of disease. Harmsen and colleagues created a new generation of cancer imaging agents, called “surface-enhanced resonance Raman scattering (SERRS) nanostars” −75-nm star-shaped gold cores wrapped in Raman reporter molecule-containing silica. When hit by a near-infrared laser, these nanostars emit a unique photonic signature (Raman “fingerprint”). The authors used a new silica encapsulation method and a reporter molecule that was “in resonance” with the laser, which meant that they shone nearly 400 times brighter than their “nonresonant” counterparts during Raman imaging. The SERRS nanostars were used to image macro- and microscopic malignant lesions in animal models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma with high precision. As endoscopic and handheld Raman imaging devices are further developed for the clinic, the SERRS nanostars are sure to find a place in human tumor detection.

View Full Text

Stay Connected to Science Translational Medicine