Research ArticleGenetic Medicine

Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease

See allHide authors and affiliations

Science Translational Medicine  14 Jan 2015:
Vol. 7, Issue 270, pp. 270ra6
DOI: 10.1126/scitranslmed.3010134

What Happens When Titins Are Trimmed?

The most common form of inherited heart failure, dilated cardiomyopathy, can be caused by mutations in a mammoth heart protein, appropriately called titin. Now, Roberts et al. sort out which titin mutations cause disease and why some people can carry certain titin mutations but remain perfectly healthy. In an exhaustive survey of more than 5200 people, with and without cardiomyopathy, the authors sequenced the titin gene and measured its corresponding RNA and protein levels. The alterations in titin were truncating mutations, which cause short nonfunctional versions of the RNA or protein. These defects produced cardiomyopathy when they occurred closer to the protein’s carboxyl terminus and in exons that were abundantly transcribed. The titin-truncating mutations that occur in the general population tended not to have these characteristics and were usually benign. This new detailed understanding of the molecular basis of dilated cardiomyopathy penetrance will promote better disease management and accelerate rational patient stratification.


The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) promises new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN-truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5267 individuals across the spectrum of cardiac physiology and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms (using the TTN transcript annotations available at, and demonstrate that these data, coupled with the position of the TTNtv, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause of DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses, we provide evidence for a length-dependent mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings.

View Full Text

Stay Connected to Science Translational Medicine