You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs—AR3A, AR3B, and AR4A—delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.
- Copyright © 2014, American Association for the Advancement of Science