You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
In multiple sclerosis (MS), lymphocyte—in particular B cell—transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27+IgD− memory B cells, CD27hiCD38hi plasma cells/plasmablasts, or CD27−IgD− B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell–targeting therapeutic strategies and may lead to more targeted approaches.
- Copyright © 2014, American Association for the Advancement of Science