You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening, cutaneous adverse drug reactions that are accompanied by keratinocyte cell death. Dead keratinocytes from SJS/TEN lesions exhibited necrosis, by morphological criteria. Supernatant from peripheral blood mononuclear cells (PBMCs) that had been exposed to the causative drug from patients with SJS/TEN induced the death of SJS/TEN keratinocytes, whereas supernatant from PBMCs of patients with ordinary drug skin reactions (ODSRs) exposed to the same drug did not. Keratinocytes from ODSR patients or from healthy controls were unaffected by supernatant from SJS/TEN or ODSR PBMCs. Mass spectrometric analysis identified annexin A1 as a key mediator of keratinocyte death; depletion of annexin A1 by a specific antibody diminished supernatant cytotoxicity. The necroptosis-mediating complex of RIP1 and RIP3 was indispensable for SJS/TEN supernatant–induced keratinocyte death, and SJS/TEN keratinocytes expressed abundant formyl peptide receptor 1 (FPR1), the receptor for annexin A1, whereas control keratinocytes did not. Inhibition of necroptosis completely prevented SJS/TEN-like responses in a mouse model of SJS/TEN. Our results demonstrate that a necroptosis pathway, likely mediated by annexin 1 acting through the FPR1 receptor, contributes to SJS/TEN.
- Copyright © 2014, American Association for the Advancement of Science