You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and fatal acute respiratory illness in humans. However, no prophylactic and therapeutic agents specifically against MERS-CoV are currently available. Entry of MERS-CoV into target cells depends on binding of the receptor binding domain (RBD) of the viral envelope spike glycoprotein to the cellular receptor dipeptidyl peptidase 4 (DPP4). We report the isolation and characterization of two potent human RBD-specific neutralizing monoclonal antibodies (MERS-4 and MERS-27) derived from single-chain variable region fragments of a nonimmune human antibody library. MERS-4 and MERS-27 inhibited infection of both pseudotyped and live MERS-CoV with IC50 (half-maximal inhibitory concentration) at nanomolar concentrations. MERS-4 also showed inhibitory activity against syncytia formation mediated by interaction between MERS-CoV spike glycoprotein and DPP4. Combination of MERS-4 and MERS-27 demonstrated a synergistic effect in neutralization against pseudotyped MERS-CoV. Biochemical analysis indicated that MERS-4 and MERS-27 blocked RBD interaction with DPP4 on the cell surface. MERS-4, in particular, bound soluble RBD with an about 45-fold higher affinity than DPP4. Mutagenesis analysis suggested that MERS-4 and MERS-27 recognized distinct regions in RBD. These results suggest that MERS-4 and MERS-27 are RBD-specific potent inhibitors and could serve as promising candidates for prophylactic and therapeutic interventions against MERS-CoV infection.
- Copyright © 2014, American Association for the Advancement of Science