You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Vitiligo is an autoimmune disease of the skin that results in disfiguring white spots. There are no U.S. Food and Drug Administration–approved treatments for vitiligo, and most off-label treatments yield unsatisfactory results. Vitiligo patients have increased numbers of autoreactive, melanocyte-specific CD8+ T cells in the skin and blood, which are directly responsible for melanocyte destruction. We report that gene expression in lesional skin from vitiligo patients revealed an interferon-γ (IFN-γ)–specific signature, including the chemokine CXCL10. CXCL10 was elevated in both vitiligo patient skin and serum, and CXCR3, its receptor, was expressed on pathogenic T cells. To address the function of CXCL10 in vitiligo, we used a mouse model of disease that also exhibited an IFN-γ–specific gene signature, expression of CXCL10 in the skin, and up-regulation of CXCR3 on antigen-specific T cells. Mice that received Cxcr3−/− T cells developed minimal depigmentation, as did mice lacking Cxcl10 or treated with CXCL10-neutralizing antibody. CXCL9 promoted autoreactive T cell global recruitment to the skin but not effector function, whereas CXCL10 was required for effector function and localization within the skin. Surprisingly, CXCL10 neutralization in mice with established, widespread depigmentation induces reversal of disease, evidenced by repigmentation. These data identify a critical role for CXCL10 in both the progression and maintenance of vitiligo and thereby support inhibiting CXCL10 as a targeted treatment strategy.
- Copyright © 2014, American Association for the Advancement of Science