You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to the left ventricle (LV) remodeling that occurs after myocardial infarction (MI). However, translation of these observations into a clinically relevant, therapeutic strategy remains to be established. The present study investigated targeted TIMP augmentation through regional injection of a degradable hyaluronic acid hydrogel containing recombinant TIMP-3 (rTIMP-3) in a large animal model. MI was induced in pigs by coronary ligation. Animals were then randomized to receive targeted hydrogel/rTIMP-3, hydrogel alone, or saline injection and followed for 14 days. Instrumented pigs with no MI induction served as referent controls. Multimodal imaging (fluoroscopy/echocardiography/magnetic resonance imaging) revealed that LV ejection fraction was improved, LV dilation was reduced, and MI expansion was attenuated in the animals treated with rTIMP-3 compared to all other controls. A marked reduction in proinflammatory cytokines and increased smooth muscle actin content indicative of myofibroblast proliferation occurred in the MI region with hydrogel/rTIMP-3 injections. These results provide the first proof of concept that regional sustained delivery of an MMP inhibitor can effectively interrupt adverse post-MI remodeling.
- Copyright © 2014, American Association for the Advancement of Science