You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Natural killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 37 parameters, including 28 NK cell receptors, on peripheral blood NK cells from 5 sets of monozygotic twins and 12 unrelated donors of defined human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6000 to 30,000 phenotypic populations within an individual and >100,000 phenotypes in the donor panel. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation.
- Copyright © 2013, American Association for the Advancement of Science