You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Acute myeloid leukemia (AML) is a rapidly progressing disease that is accompanied by a strong increase in microvessel density in the bone marrow. This observation prompted us to stain biopsies of AML and acute lymphoid leukemia (ALL) patients with the clinical-stage human monoclonal antibodies F8, L19, and F16 directed against markers of tumor angiogenesis. The analysis revealed that the F8 and F16 antibodies strongly stained 70% of AML and 75% of ALL bone marrow specimens, whereas chloroma biopsies were stained with all three antibodies. Therapy experiments performed in immunocompromised mice bearing human NB4 leukemia with the immunocytokine F8-IL2 [consisting of the F8 antibody fused to human interleukin-2 (IL-2)] mediated a strong inhibition of AML progression. This effect was potentiated by the addition of cytarabine, promoting complete responses in 40% of treated animals. Experiments performed in immunocompetent mice bearing C1498 murine leukemia revealed long-lasting complete tumor eradication in all treated mice. The therapeutic effect of F8-IL2 was mediated by both natural killer cells and CD8+ T cells, whereas CD4+ T cells appeared to be dispensable, as determined in immunodepletion experiments. The treatment of an AML patient with disseminated extramedullary AML manifestations with F16-IL2 (consisting of the F16 antibody fused to human IL-2, currently being tested in phase 2 clinical trials in patients with solid tumors) and low-dose cytarabine showed significant reduction of AML lesions and underlines the translational potential of vascular tumor–targeting antibody-cytokine fusions for the treatment of patients with leukemia.
- Copyright © 2013, American Association for the Advancement of Science