Research ArticleCancer

Mutational Signature of Aristolochic Acid Exposure as Revealed by Whole-Exome Sequencing

See allHide authors and affiliations

Science Translational Medicine  07 Aug 2013:
Vol. 5, Issue 197, pp. 197ra102
DOI: 10.1126/scitranslmed.3006200

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Carcinogen AAlert

Aristolochic acid (AA) is a natural compound derived from plants in the Aristolochia genus. For centuries, Aristolochia has been used throughout Asia to treat a variety of ailments as a component of traditional Chinese medicine. In recent years, however, a more sinister side of this herb has come to light when it was linked to kidney damage and cancers of the urinary tract. Now, two studies by Poon et al. and Hoang et al. present a “molecular signature” of AA-induced DNA damage, which helps to explain the mutagenic effects of AA and may also be useful as a way to detect unsuspected AA exposure as a cause of cancer.

The molecular signature seen in AA-associated tumors is characterized by a predominance of A:T-to-T:A transversions, a relatively unusual type of mutation that is infrequently seen in other types of cancer, including those caused by other carcinogens. These mutations concentrate at splice sites, causing the inappropriate inclusion or exclusion of entire exons in the resulting mRNA. The overall mutation rate is another notable feature of AA-associated cancers, because it is several times higher than the rate of mutations caused by other carcinogens such as tobacco and ultraviolet light. In both studies, the authors also used the molecular signature to discover that AA was a likely cause of tumors previously attributed to other carcinogens. In one case, a urinary tract cancer that had been attributed to smoking and, in the other case, a liver cancer previously attributed to a chronic hepatitis infection were both identified as having the telltale signature of AA mutagenesis.

The identification of a specific molecular signature for AA has both clinical and public health implications. For individual patients, the molecular signature could help physicians identify which tumors were caused by AA. Although this information cannot yet be used to optimize the treatment of individual patients, those who are diagnosed with AA-associated cancers could be monitored more closely for the appearance of additional tumors. Meanwhile, a better understanding of the mutagenic effects of AA should also help to strengthen public health efforts to decrease exposure to this carcinogenic herb.

View Full Text

Stay Connected to Science Translational Medicine