You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
RAF and MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) inhibitors are effective in treating patients with BRAF-mutant melanoma. However, most responses are partial and short-lived, and many patients fail to respond at all. We found that suppression of TORC1 activity in response to RAF or MEK inhibitors, as measured by decreased phosphorylation of ribosomal protein S6 (P-S6), effectively predicted induction of cell death by the inhibitor in BRAF-mutant melanoma cell lines. In resistant melanomas, TORC1 activity was maintained after treatment with RAF or MEK inhibitors, in some cases despite robust suppression of mitogen-activated protein kinase (MAPK) signaling. In in vivo mouse models, suppression of TORC1 after MAPK inhibition was necessary for induction of apoptosis and tumor response. Finally, in paired biopsies obtained from patients with BRAF-mutant melanoma before treatment and after initiation of RAF inhibitor therapy, P-S6 suppression predicted significantly improved progression-free survival. Such a change in P-S6 could be readily monitored in real time by serial fine-needle aspiration biopsies, making quantitation of P-S6 a valuable biomarker to guide treatment in BRAF-mutant melanoma.
- Copyright © 2013, American Association for the Advancement of Science