Research ArticleTissue Engineering

Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite

See allHide authors and affiliations

Science Translational Medicine  09 Jan 2013:
Vol. 5, Issue 167, pp. 167ra6
DOI: 10.1126/scitranslmed.3004838

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Let There Be Light

Light has long been a favorite tool in medicine, finding utility in everything from skin conditions to depression to imaging. Now, Sharma and colleagues have shown that light can be used for biomaterials. Shining light on a hydrogel mixture causes it to polymerize within a defect, thus promoting tissue growth and repairing cartilage in patients.

The biomaterial was designed to fill irregular wounds, such as articular cartilage defects. A biological adhesive was applied to the defect, followed by filling with a poly(ethylene glycol) (PEG)–based hydrogel solution. Then, light was applied to polymerize the material to form a solid implant. The hydrogel-adhesive was tested in a large-animal model to see how it worked in combination with the standard procedure for cartilage repair, called microfracture. The surgeons noted that the animals that received the biomaterial along with microfracture had a greater defect fill that was stronger and had more heterogeneous components (cells, proteins, etc.).

The authors then moved to testing in people. Fifteen patients with symptomatic cartilage defects were treated with the adhesive-hydrogel after microfracture, whereas three patients were treated with microfracture only. No major adverse events were noted in 6 months after surgery. Similar to the animal studies, the photoactive biomaterial allowed for a greater filling of repair tissue in the defect compared with the control group, with material properties similar to adjacent, healthy cartilage. In addition, hydrogel-treated patients reported a decrease in overall pain severity and frequency over time. Although further clinical testing is needed to compare long-term outcomes in more patients, this light-mediated biomaterial therapy promises to be a versatile and safe way to enhance cartilage repair.

View Full Text