You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Mesenchymal stem cells (MSCs) may be useful for treating a variety of disease states associated with vascular instability including traumatic brain injury (TBI). A soluble factor, tissue inhibitor of matrix metalloproteinase-3 (TIMP3), produced by MSCs is shown to recapitulate the beneficial effects of MSCs on endothelial function and to ameliorate the effects of a compromised blood-brain barrier (BBB) due to TBI. Intravenous administration of recombinant TIMP3 inhibited BBB permeability caused by TBI, whereas attenuation of TIMP3 expression in intravenously administered MSCs blocked the beneficial effects of the MSCs on BBB permeability and stability. MSCs increased circulating concentrations of soluble TIMP3, which blocked vascular endothelial growth factor-A–induced breakdown of endothelial cell adherens junctions in vitro and in vivo. These findings elucidate a potential molecular mechanism for the beneficial effects of MSCs on the BBB after TBI and demonstrate a role for TIMP3 in the regulation of BBB integrity.
- Copyright © 2012, American Association for the Advancement of Science