Research ArticleTissue Engineering

A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones

See allHide authors and affiliations

Science Translational Medicine  04 Jul 2012:
Vol. 4, Issue 141, pp. 141ra93
DOI: 10.1126/scitranslmed.3003720

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Building Up Bone

Large gaps or defects in bone are typically bridged using segments of bone from elsewhere in the body [referred to as autologous bone grafts (ABGs)]. It is not ideal, however, to harvest bone tissue from elsewhere; it is two surgeries, two defect sites, and therefore an increased risk of infection. Instead, tissue engineers have taken on this challenge of replenishing lost bone. In this issue, Reichert and colleagues have designed a polymer-based scaffold that can be loaded with cells and growth factors and inserted directly into a bone defect, with healing demonstrated in sheep after only 3 months.

Reichert et al. used their medical-grade polycaprolactone–tricalcium phosphate (mPCL-TCP) scaffolds either alone or in combination with donor mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). The scaffolds were implanted into critical-sized defects (3 cm) in the long bones of sheep, whose bones resemble formation and structure in humans, and are therefore a good model for bone tissue regeneration. After 3 months, the authors reported bone bridging in 100% of the ABGs and scaffold/rhBMP-7 groups but saw bridging in only 38% of the bare scaffold and scaffold/MSC groups. After 12 months, however, animals treated with the scaffold/rhBMP-7 combination showed greater bone volume and mechanical strength than the ABG positive control. The authors attribute this improvement over time to be the result of local BMP delivery (greater stimulation of bone formation) in addition to more bone deposition along the periphery of the defect (enhanced strength). The addition of MSCs did not help bone regeneration, as other studies have shown previously.

The next step is determining the ideal BMP dose and the mechanism underlying the effects of the scaffold/rhBMP-7 on surrounding cells and tissue. Then, the hope is to move to clinical trials, where this scaffold will be put to the test for evaluation of bone regeneration and load bearing in humans.

View Full Text

Stay Connected to Science Translational Medicine