The Anti-Trypanosome Drug Fexinidazole Shows Potential for Treating Visceral Leishmaniasis

See allHide authors and affiliations

Science Translational Medicine  01 Feb 2012:
Vol. 4, Issue 119, pp. 119re1
DOI: 10.1126/scitranslmed.3003326

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


Safer and more effective oral drugs are required to treat visceral leishmaniasis, a parasitic disease that kills 50,000 to 60,000 people each year in parts of Asia, Africa, and Latin America. Here, we report that fexinidazole, a drug currently in phase 1 clinical trials for treating African trypanosomiasis, shows promise for treating visceral leishmaniasis. This 2-substituted 5-nitroimidazole drug is rapidly oxidized in vivo in mice, dogs, and humans to sulfoxide and sulfone metabolites. Both metabolites of fexinidazole were active against Leishmania donovani amastigotes grown in macrophages, whereas the parent compound was inactive. Pharmacokinetic studies with fexinidazole (200 mg/kg) showed that fexinidazole sulfone achieves blood concentrations in mice above the EC99 (effective concentration inhibiting growth by 99%) value for at least 24 hours after a single oral dose. A once-daily regimen for 5 days at this dose resulted in a 98.4% suppression of infection in a mouse model of visceral leishmaniasis, equivalent to that seen with the drugs miltefosine and Pentostam, which are currently used clinically to treat this tropical disease. In African trypanosomes, the mode of action of nitro drugs involves reductive activation via a NADH (reduced form of nicotinamide adenine dinucleotide)–dependent bacterial-like nitroreductase. Overexpression of the leishmanial homolog of this nitroreductase in L. donovani increased sensitivity to fexinidazole by 19-fold, indicating that a similar mechanism is involved in both parasites. These findings illustrate the potential of fexinidazole as an oral drug therapy for treating visceral leishmaniasis.

View Full Text

Stay Connected to Science Translational Medicine

Editor's Blog