You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
X-linked severe combined immunodeficiency (SCID-X1) is caused by mutations in the common cytokine receptor γ chain. These mutations classically lead to complete absence of functional T and natural killer cell lineages as well as to intrinsically compromised B cell function. Although human leukocyte antigen (HLA)–matched hematopoietic stem cell transplantation (HSCT) is highly successful in SCID-X1 patients, HLA-mismatched procedures can be associated with prolonged immunodeficiency, graft-versus-host disease, and increased overall mortality. Here, 10 children were treated with autologous CD34+ hematopoietic stem and progenitor cells transduced with a conventional gammaretroviral vector. The patients did not receive myelosuppressive conditioning and were monitored for immunological recovery after cell infusion. All patients were alive after a median follow-up of 80 months (range, 54 to 107 months), and a functional polyclonal T cell repertoire was restored in all patients. Humoral immunity only partially recovered but was sufficient in some patients to allow for withdrawal of immunoglobulin replacement; however, three patients developed antibiotic-responsive acute pulmonary infection after discontinuation of antibiotic prophylaxis and/or immunoglobulin replacement. One patient developed acute T cell acute lymphoblastic leukemia because of up-regulated expression of the proto-oncogene LMO-2 from insertional mutagenesis, but maintained a polyclonal T cell repertoire through chemotherapy and entered remission. Therefore, gene therapy for SCID-X1 without myelosuppressive conditioning effectively restored T cell immunity and was associated with high survival rates for up to 9 years. Further studies using vectors designed to limit mutagenesis and strategies to enhance B cell reconstitution are warranted to define the role of this treatment modality alongside conventional HSCT for SCID-X1.
Footnotes
-
Citation: H. B. Gaspar, S. Cooray, K. C. Gilmour, K. L. Parsley, S. Adams, S. J. Howe, A. Al Ghonaium, J. Bayford, L. Brown, E. G. Davies, C. Kinnon, A. J. Thrasher, Long-Term Persistence of a Polyclonal T Cell Repertoire After Gene Therapy for X-Linked Severe Combined Immunodeficiency. Sci. Transl. Med. 3, 97ra79 (2011).
- Copyright © 2011, American Association for the Advancement of Science