You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Preclinical evaluation of antibody-based immunotherapies for the treatment of type 1 diabetes (T1D) in animal models is often hampered by the fact that the human antibody drug does not cross-react with its mouse counterpart. In this issue of Science Translational Medicine, researchers describe a new mouse model that expresses the human isoform of a molecule targeted by T1D antibody therapies that are currently being tested in clinical trials—the human epsilon chain of the CD3 complex expressed on T cells. Anti-CD3 is capable of reducing insulin needs in individuals with recently diagnosed T1D; however, the precise underlying mechanisms of action and the minimal effective dose have been difficult to define. The new humanized mouse model will be instrumental in optimizing anti-CD3–based therapies and accelerating their clinical realization.
Footnotes
-
Citation: D. Bresson, M. von Herrath, Humanizing Animal Models: A Key to Autoimmune Diabetes Treatment. Sci. Transl. Med. 3, 68ps4 (2011).
- Copyright © 2011, American Association for the Advancement of Science