You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Low-grade polymicrobial infection induced by cecal ligation and puncture is lethal in heme oxygenase-1–deficient mice (Hmox1−/−), but not in wild-type (Hmox1+/+) mice. Here we demonstrate that the protective effect of this heme-catabolizing enzyme relies on its ability to prevent tissue damage caused by the circulating free heme released from hemoglobin during infection. Heme administration after low-grade infection in mice promoted tissue damage and severe sepsis. Free heme contributed to the pathogenesis of severe sepsis irrespective of pathogen load, revealing that it compromised host tolerance to infection. Development of lethal forms of severe sepsis after high-grade infection was associated with reduced serum concentrations of the heme sequestering protein hemopexin (HPX), whereas HPX administration after high-grade infection prevented tissue damage and lethality. Finally, the lethal outcome of septic shock in patients was also associated with reduced HPX serum concentrations. We propose that targeting free heme by HPX might be used therapeutically to treat severe sepsis.
Footnotes
-
↵* Present address: Universidade Federal do Rio de Janeiro Campus Macaé–Instituto Macaé de Metrologia e Tecnologia, Macaé, Rio de Janeiro 27930-560, Brazil.
-
Citation: R. Larsen, R. Gozzelino, V. Jeney, L. Tokaji, F. A. Bozza, A. M. Japiassú, D. Bonaparte, M. M. Cavalcante, Â. Chora, A. Ferreira, I. Marguti, S. Cardoso, N. Sepúlveda, A. Smith, M. P. Soares, A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2, 51ra71 (2010).
- Copyright © 2010, American Association for the Advancement of Science