You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The pathogenesis of human and simian immunodeficiency viruses is characterized by CD4+ T cell depletion and chronic T cell activation, leading ultimately to AIDS. CD4+ T helper (TH) cells provide protective immunity and immune regulation through different immune cell functional subsets, including TH1, TH2, T regulatory (Treg), and interleukin-17 (IL-17)–secreting TH17 cells. Because IL-17 can enhance host defenses against microbial agents, thus maintaining the integrity of the mucosal barrier, loss of TH17 cells may foster microbial translocation and sustained inflammation. Here, we study HIV-seropositive subjects and find that progressive disease is associated with the loss of TH17 cells and a reciprocal increase in the fraction of the immunosuppressive Treg cells both in peripheral blood and in rectosigmoid biopsies. The loss of TH17/Treg balance is associated with induction of indoleamine 2,3-dioxygenase 1 (IDO1) by myeloid antigen-presenting dendritic cells and with increased plasma concentration of microbial products. In vitro, the loss of TH17/Treg balance is mediated directly by the proximal tryptophan catabolite from IDO metabolism, 3-hydroxyanthranilic acid. We postulate that induction of IDO may represent a critical initiating event that results in inversion of the TH17/Treg balance and in the consequent maintenance of a chronic inflammatory state in progressive HIV disease.
Footnotes
-
↵* These authors contributed equally to this work.
-
↵† Present address: National Immune Monitoring Laboratory, Montréal, Quebec H7N 4A4, Canada.
-
↵‡ Present address: Department of Medical Parasitology, New York University, New York, NY 10010, USA.
-
Citation: D. Favre, J. Mold, P. W. Hunt, B. Kanwar, P. Loke, L. Seu, J. D. Barbour, M. M. Lowe, A. Jayawardene, F. Aweeka, Y. Huang, D. C. Douek, J. M. Brenchley, J. N. Martin, F. M. Hecht, S. G. Deeks, J. M. McCune, Tryptophan Catabolism by Indoleamine 2,3-Dioxygenase 1 Alters the Balance of TH17 to Regulatory T Cells in HIV Disease. Sci. Transl. Med. 2, 32ra36 (2010).
- Copyright © 2010, American Association for the Advancement of Science