You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The predisposition for scleroderma, defined as fibrosis and hardening of the skin, is poorly understood. We report that stiff skin syndrome (SSS), an autosomal dominant congenital form of scleroderma, is caused by mutations in the sole Arg-Gly-Asp sequence–encoding domain of fibrillin-1 that mediates integrin binding. Ordered polymers of fibrillin-1 (termed microfibrils) initiate elastic fiber assembly and bind to and regulate the activation of the profibrotic cytokine transforming growth factor–β (TGFβ). Altered cell-matrix interactions in SSS accompany excessive microfibrillar deposition, impaired elastogenesis, and increased TGFβ concentration and signaling in the dermis. The observation of similar findings in systemic sclerosis, a more common acquired form of scleroderma, suggests broad pathogenic relevance.
Footnotes
-
↵* These authors contributed equally to this work.
-
Citation: B. L. Loeys, E. E. Gerber, D. Riegert-Johnson, S. Iqbal, P. Whiteman, V. McConnell, C. R. Chillakuri, D. Macaya, P. J. Coucke, A. De Paepe, D. P. Judge, F. Wigley, E. C. Davis, H. J. Mardon, P. Handford, D. R. Keene, L. Y. Sakai, H. C. Dietz, Mutations in Fibrillin-1 Cause Congenital Scleroderma: Stiff Skin Syndrome. Sci. Transl. Med. 2, 23ra20 (2010).
- Copyright © 2010, American Association for the Advancement of Science