You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Remediating malalignment
Joint alignment affects cartilage and bone degeneration in osteoarthritis. Haberkamp et al. studied site-specific differences in cartilage and bone damage in patients with knee osteoarthritis. They found that varus malalignment (a deviation of axial alignment of the lower leg) caused reduced load on the lateral compartment of the knee, whereas there was a compensatory increase in medial load, particularly in patients with high body mass index. Results help map the spatial structural changes in cartilage and bone that occur during varus knee osteoarthritis and highlight the potential therapeutic utility of load redistribution.
Abstract
Osteoarthritis (OA) is considerably affected by joint alignment. Here, we investigate the patterns of spatial osteochondral heterogeneity in patients with advanced varus knee OA together with clinical data. We report strong correlations of osteochondral parameters within individual topographical patterns, highlighting their fundamental and location-dependent interactions in OA. We further identify site-specific effects of varus malalignment on the lesser loaded compartment and, conversely, an unresponsive overloaded compartment. Last, we trace compensatory mechanisms to the overloaded subarticular spongiosa in patients with additional high body weight. We therefore propose to consider and to determine axial alignment in clinical trials when selecting the location to assess structural changes in OA. Together, these findings broaden the scientific basis of therapeutic load redistribution and weight loss in varus knee OA.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.