You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
How to mete out metformin
Metformin is the most commonly used drug to treat type 2 diabetes (T2D), though not all patients respond to it, and still, others do not tolerate it. García-Calzón et al. analyzed genome-wide DNA methylation in the blood of drug-naïve patients who were recently diagnosed with T2D. They found that DNA methylation at specific loci associated with future metformin response or tolerance, respectively, across multiple cohorts. These epigenetic markers may have theranostic potential regarding which patients should receive metformin.
Abstract
Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.