You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Perturbing plaque macrophages
Macrophages in atherosclerotic lesions promote inflammation and plaque progression and are an attractive therapeutic target. Here, Tao et al. used nanoparticles to inhibit pro-atherogenic macrophages by siRNA targeting Ca2+/calmodulin-dependent protein kinase γ. Nanoparticle treatment induced phagocytosis of apoptotic cells in plaques and promoted plaque stability, reducing necrotic area and increasing fibrous cap thickness in a mouse model of atherosclerosis. This study establishes proof of concept for siRNA nanoparticles targeting lesional macrophages as a treatment for atherosclerosis.
Abstract
Atherosclerotic lesional macrophages express molecules that promote plaque progression, but lack of mechanisms to therapeutically target these molecules represents a major gap in translational cardiovascular research. Here, we tested the efficacy of a small interfering RNA (siRNA) nanoparticle (NP) platform targeting a plaque-destabilizing macrophage molecule—Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ). CaMKIIγ becomes activated in advanced human and mouse plaque macrophages and drives plaque necrosis by suppressing the expression of the efferocytosis receptor MerTK. When macrophage-targeted siCamk2g NPs were administered to Western diet–fed Ldlr−/− mice, the atherosclerotic lesions showed decreased CaMKIIγ and increased MerTK expression in macrophages, improved phagocytosis of apoptotic cells (efferocytosis), decreased necrotic core area, and increased fibrous cap thickness—all signs of increased plaque stability—compared with mice treated with control siRNA NPs. These findings demonstrate that atherosclerosis-promoting genes in plaque macrophages can be targeted with siRNA NPs in a preclinical model of advanced atherosclerosis.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.