Research ArticleRHEUMATIC DISEASE

Using genetics to prioritize diagnoses for rheumatology outpatients with inflammatory arthritis

See allHide authors and affiliations

Science Translational Medicine  27 May 2020:
Vol. 12, Issue 545, eaay1548
DOI: 10.1126/scitranslmed.aay1548

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A genetic tool for triaging diagnoses

Multiple slowly progressing diseases initially present with inflammatory arthritis, and it can be difficult to clinically differentiate these conditions. Knevel et al. show that genetic data could be used to triage inflammatory arthritis–causing diagnoses at a patient’s first visit, improving the likelihood of a correct initial diagnosis and potentially expediting appropriate treatment. Their genetic diagnostic tool, here optimized for rheumatic disease diagnosis, could, in principle, be calibrated for other phenotypically similar diseases with different underlying genetics.

Abstract

It is challenging to quickly diagnose slowly progressing diseases. To prioritize multiple related diagnoses, we developed G-PROB (Genetic Probability tool) to calculate the probability of different diseases for a patient using genetic risk scores. We tested G-PROB for inflammatory arthritis–causing diseases (rheumatoid arthritis, systemic lupus erythematosus, spondyloarthropathy, psoriatic arthritis, and gout). After validating on simulated data, we tested G-PROB in three cohorts: 1211 patients identified by International Classification of Diseases (ICD) codes within the eMERGE database, 245 patients identified through ICD codes and medical record review within the Partners Biobank, and 243 patients first presenting with unexplained inflammatory arthritis and with final diagnoses by record review within the Partners Biobank. Calibration of G-probabilities with disease status was high, with regression coefficients from 0.90 to 1.08 (1.00 is ideal). G-probabilities discriminated true diagnoses across the three cohorts with pooled areas under the curve (95% CI) of 0.69 (0.67 to 0.71), 0.81 (0.76 to 0.84), and 0.84 (0.81 to 0.86), respectively. For all patients, at least one disease could be ruled out, and in 45% of patients, a likely diagnosis was identified with a 64% positive predictive value. In 35% of cases, the clinician’s initial diagnosis was incorrect. Initial clinical diagnosis explained 39% of the variance in final disease, which improved to 51% (P < 0.0001) after adding G-probabilities. Converting genotype information before a clinical visit into an interpretable probability value for five different inflammatory arthritides could potentially be used to improve the diagnostic efficiency of rheumatic diseases in clinical practice.

View Full Text

Stay Connected to Science Translational Medicine