You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Recording in high resolution
Recording large number of neural signals in real time with high definition for long periods of time is necessary for understanding brain physiology and disease pathophysiology. Unfortunately, current brain interface devices only allow recordings of small brain areas with limited number of electrodes. Here, Chiang et al. developed a neural interface device, called Neural Matrix, that allowed stable in vivo neural recordings with high throughput in rodents and nonhuman primates. The system provided stable recordings projected to last for 6 years after implantation. The Neural Matrix will be useful for the study of brain physiology in preclinical setting and might be scalable to humans for clinical purposes.
Abstract
Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed a flexible, multiplexed electrode array, called “Neural Matrix,” that provides stable in vivo neural recordings in rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device design, and iterative in vivo optimization described here are essential components to overcoming current hurdles facing next-generation neural technologies.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.