You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Checkpoint musical chairs
Anti–PD-1 or PD-L1 antibodies can reinvigorate antitumor immunity in a subset of patients with cancer. To better understand the mechanisms behind successful therapy, Mayoux et al. characterized various ligands on the surface of dendritic cells (DCs). PD-L1 on DCs can bind B7.1 on the same cell, potentially preventing PD-1 ligation on T cells or B7.1 ligation of its partner CD28. They saw that PD-L1 was expressed in excess of B7.1, likely preventing T cell stimulation through these two pathways. Patients with a high DC signature before treatment were more likely to respond to PD-L1 blockade. These results reveal that in cis interactions on DCs have immunological and likely clinical consequences for checkpoint blockade therapy.
Abstract
PD-L1/PD-1 blocking antibodies have demonstrated therapeutic efficacy across a range of human cancers. Extending this benefit to a greater number of patients, however, will require a better understanding of how these therapies instigate anticancer immunity. Although the PD-L1/PD-1 axis is typically associated with T cell function, we demonstrate here that dendritic cells (DCs) are an important target of PD-L1 blocking antibody. PD-L1 binds two receptors, PD-1 and B7.1 (CD80). PD-L1 is expressed much more abundantly than B7.1 on peripheral and tumor-associated DCs in patients with cancer. Blocking PD-L1 on DCs relieves B7.1 sequestration in cis by PD-L1, which allows the B7.1/CD28 interaction to enhance T cell priming. In line with this, in patients with renal cell carcinoma or non–small cell lung cancer treated with atezolizumab (PD-L1 blockade), a DC gene signature is strongly associated with improved overall survival. These data suggest that PD-L1 blockade reinvigorates DC function to generate potent anticancer T cell immunity.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.