Research ArticleTuberculosis

A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough

See allHide authors and affiliations

Science Translational Medicine  23 Oct 2019:
Vol. 11, Issue 515, eaaw8287
DOI: 10.1126/scitranslmed.aaw8287

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A triage test for tuberculosis

Tuberculosis remains a global health burden. Ahmad et al. used machine learning to develop an algorithm that distinguished active tuberculosis from other diseases with similar symptoms by measuring expression of four proteins in blood samples. The authors validated their triage test’s discriminatory power using blood samples from subjects with persistent cough across several continents, showing that performance was improved when detection of antibodies against a mycobacterial antigen was added to the panel. These promising results support further development and field testing using a point-of-care format.

Abstract

Improved tuberculosis (TB) prevention and control depend critically on the development of a simple, readily accessible rapid triage test to stratify TB risk. We hypothesized that a blood protein-based host response signature for active TB (ATB) could distinguish it from other TB-like disease (OTD) in adult patients with persistent cough, thereby providing a foundation for a point-of-care (POC) triage test for ATB. Three adult cohorts consisting of ATB suspects were recruited. A bead-based immunoassay and machine learning algorithms identified a panel of four host blood proteins, interleukin-6 (IL-6), IL-8, IL-18, and vascular endothelial growth factor (VEGF), that distinguished ATB from OTD. An ultrasensitive POC-amenable single-molecule array (Simoa) panel was configured, and the ATB diagnostic algorithm underwent blind validation in an independent, multinational cohort in which ATB was distinguished from OTD with receiver operator characteristic–area under the curve (ROC-AUC) of 0.80 [95% confidence interval (CI), 0.75 to 0.85], 80% sensitivity (95% CI, 73 to 85%), and 65% specificity (95% CI, 57 to 71%). When host antibodies against TB antigen Ag85B were added to the panel, performance improved to 86% sensitivity and 69% specificity. A blood-based host response panel consisting of four proteins and antibodies to one TB antigen can help to differentiate ATB from other causes of persistent cough in patients with and without HIV infection from Africa, Asia, and South America. Performance characteristics approach World Health Organization (WHO) target product profile accuracy requirements and may provide the foundation for an urgently needed blood-based POC TB triage test.

View Full Text