Research ArticleCancer

Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy

See allHide authors and affiliations

Science Translational Medicine  25 Jul 2018:
Vol. 10, Issue 451, eaat3504
DOI: 10.1126/scitranslmed.aat3504

Blocking activin actively treats cancer

Platinum-based chemotherapy is a mainstay of treatment for lung cancer, but resistance to this therapy is a common problem, as are dose-limiting side effects, particularly kidney toxicity. To search for mechanisms that may contribute to treatment resistance, Marini et al. performed a whole-genome RNA interference screen and identified the activin pathway, which can be targeted. The authors demonstrated that inhibition of this pathway using a small molecule or a protein called follistatin can offer a dual benefit in that it potentiates the effects of platinum drugs in mouse models of cancer and also protects the animals from kidney damage. These findings suggest that activin inhibitors could be a valuable addition to platinum chemotherapy, enhancing the efficacy of treatment while also allowing the use of higher doses or longer periods of drug exposure.


Resistance to platinum chemotherapy is a long-standing problem in the management of lung adenocarcinoma. Using a whole-genome synthetic lethal RNA interference screen, we identified activin signaling as a critical mediator of innate platinum resistance. The transforming growth factor–β (TGFβ) superfamily ligands activin A and growth differentiation factor 11 (GDF11) mediated resistance via their cognate receptors through TGFβ-activated kinase 1 (TAK1), rather than through the SMAD family of transcription factors. Inhibition of activin receptor signaling or blockade of activin A and GDF11 by the endogenous protein follistatin overcame this resistance. Consistent with the role of activin signaling in acute renal injury, both therapeutic interventions attenuated acute cisplatin-induced nephrotoxicity, its major dose-limiting side effect. This cancer-specific enhancement of platinum-induced cell death has the potential to dramatically improve the safety and efficacy of chemotherapy in lung cancer patients.

View Full Text