Research ArticleGenetics

Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population

See allHide authors and affiliations

Science Translational Medicine  04 Nov 2009:
Vol. 1, Issue 5, pp. 5ra11
DOI: 10.1126/scitranslmed.3000237

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Editor's Summary

Gout, the “Disease of Kings” as it is often known, is a painful medical condition characterized by sharp acute pain in bone joints, due to the high deposition of uric acid crystals from the blood serum into the surrounding cartilage. It affects approximately 1% of the U.S. population and remains a significant public health concern. The prevalence of gout is much higher in certain Asian ethnic groups, and is also reportedly rising in African Americans. Current medical treatments are aimed at ameliorating pain severity, but as the underlying genetic etiology of the disease unfolds, new targets for future therapies are likely to be found.

Although genome-wide association studies (GWAS) have enabled the calculation of risk predispositions for a wide variety of complex diseases, the relation of gene function to the causality of disease-related mutations has remained largely unclear. A recent U.S. population–based study supported an association between urate levels and gout in individuals carrying variants in a multifunctional transporter gene, ABCG2. This study identified Q141K as a high-risk variant in nearly 10% of gout cases in Caucasians.

Now, a team led by Hirotaka Matsuo report that in a Japanese population, another risk variant in ABCG2, namely the Q126X nonfunctional mutation, confers an even higher risk associated with an increase in uric acid deposition in the blood and may cause gout in Asians. Because this gene is responsible for giving rise to a protein that transports harmful waste products and metabolites out of the kidney and gut, they extensively validate the biological activity of ABCG2 using functional assays in vitro that effectively recapitulate human data obtained from Japanese individuals afflicted with the disease. These findings lend weight to previously reported GWAS; moreover, these newly identified specific high-risk variants that block urate secretion may serve as potential intervention points for quelling the disease.

Footnotes

    View Full Text

    Stay Connected to Science Translational Medicine