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NEW: Network-Enabled Wisdom in Biology,
Medicine, and Health Care
Eric E. Schadt1 and Johan L. M. Björkegren2,3,4*
Complete repertoires of molecular activity in and between tissues provided by new high-dimensional “omics”
technologies hold great promise for characterizing human physiology at all levels of biological hierarchies. The
combined effects of genetic and environmental perturbations at any level of these hierarchies can lead to vicious
cycles of pathology and complex systemic diseases. The challenge lies in extracting all relevant information from
the rapidly increasing volumes of omics data and translating this information first into knowledge and ultimately
into wisdom that can yield clinically actionable results. Here, we discuss how molecular networks are central to
the implementation of this new biology in medicine and translation to preventive and personalized health care.
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INTRODUCTION

Next-generation technologies that routinely measure biological pa-
rameters on a genome-wide scale (“omics” data)—such as DNA var-
iations and epigenetic modifications, RNA and protein concentrations,
and a variety of metabolites—are continuously being refined and of-
fered at ever-decreasing costs. The resulting oceans of molecular data
(moving quickly from the petabyte to exabyte scale or, even more sca-
ry, zetabyte—that’s 21 zeros) cannot be deciphered with traditional
mathematical analyses carried out on isolated computers. Nor is the
traditional representation of biological processes as linear pathways suf-
ficient to represent the hierarchy of levels of molecular and higher-
order regulation, and the interplay that defines human physiology and
pathology. Instead, the “new biology” requires large warehouse-scale
computing and sophisticated algorithms capable of processing and ap-
propriately integrating the vast amounts of molecular data being gen-
erated today (and which continue to grow at an exponential pace). We
believe that multidimensional networks are required to model human
physiology in general and to identify key drivers of pathology in indi-
vidual patients. (See the documentary film The New Biology at http://
www.youtube.com/watch?v=sjTQD6E3lH4.)
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NEW BIOLOGY

Intricate data-intensive computations that can span days, weeks, or
even months give rise to mathematical models that reflect the web
of genetic, epigenetic, metabolic, environmental, and biochemical in-
teractions and modes of regulation that define biological processes
across many layers of information. This web is best represented by
networks that operate at multiple levels of biological hierarchies—
from the molecular networks at play within a single cell, to the cellular
networks that define the activity of a tissue, to system-level networks
that operate across organs in a system, on up to social networks that
reflect interactions among individuals in a population and between
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individuals and their environment in ways that affect disease [questions
remain as to the meaning of the disease associations observed in social
networks (1)]. The architecture of biological networks shares similarities
with well-studied ones in other disciplines, such as social and transpor-
tation networks. Like these large-scale information networks, molecular
networks in biology are sparse and follow a power-law distribution in
which most nodes have few interactions (say, one to three), whereas a
smaller number, referred to as hub nodes, have many interactions (tens to
hundreds or even thousands) (2) (Fig. 1).

Mapping the connectivity structure of networks (that is, the topology)
is crucial for understanding how biological processes are defined at the
molecular level, how they can be disrupted to cause disease, and how we
can best assess the risk of and intervene to treat disease. Data-intensive
omics technologies have now pushed researchers to adopt a new ap-
proach to molecular biology that maximally integrates information from
the big data generated from these technologies to uncover biological pro-
cesses and relationships among these processes that would otherwise re-
main hidden. Figure 2A summarizes the basic concept of network
inference as required for network-enabled wisdom (NEW) in biology.

The omics revolution that drives NEW biology is erupting in bio-
medicine and nearly every other subfield of biological research. An as-
pect of human health for which NEW biology provides much-needed
assistance is in helping humanity combat the increasing threat of new
pandemics—epidemics of infectious diseases (3). The expansion of trade
and travel has intensified the threat of future pandemics, whose devas-
tating effects can be minimized only through prevention and early de-
tection. Fast and accurate genomic sequencing technologies (4) combined
with high-performance computing (5)—both key drivers of NEW
biology—can help to efficiently pinpoint the geographical and some-
times even patient-specific origins of threatening pandemics. Through
direct sequencing of viral DNA or bacterial genomes, “disease weather
maps” that show the historical, current, and predicted locations of a
pandemic spread can be established. These maps could be quite spe-
cific and even pinpoint the source of the outbreak down to a given
individual. Direct sequencing and comparative genome analysis from
resistant and susceptible individuals can help to rapidly identify mech-
anisms of microbial resistance, which can be lifesaving for affected pa-
tients. The actions in response to the outbreaks of cholera in Haiti (6)
and Escherichia coli in Germany (7) provide robust examples of the
lifesaving capability of NEW biology. In such situations, information
about the people and places in which infections and pathogens orig-
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inate, respectively, has the potential to lead rapidly to preventive mea-
sures that reduce the spread of disease (for example, prophylactic
treatment of people who reside in high-risk locations).
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A network-based understanding of a pathogen’s molecular biology
can also take us beyond DNA sequencing to a deeper characterization
(for example, genome-wide gene expression and protein analysis) of
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Fig. 1. Network news. Biological networks are sensors and mediators of
the combined effects of environmental and genetic CCD risk factors. Left:

individual can be used to distinguish networks that cause disease from
those that constitute a reaction to disease (15). The reactive or causal
 7
An example of an arterial wall co-expression gene network inferred from
genome-wide mRNA profiles isolated from three arterial wall samples from
the same patient (three RNA samples per individual). The criterion for
edges (that is, interactions between nodes) in this network is supported
by the data from at least two arterial wall samples. As in this example,
biological networks are sparse, following a power-law distribution in which
most nodes (that is, network components, which can be genes, proteins, or
metabolites; shown in red) have few interactions; the few nodes that have
many interactions are called “hubs” (yellow nodes in this example; >44 edges
per node) (2). Networks can be inferred from various kinds of genome-wide
data sets with the use of computational inference algorithms. One type is
the exemplified gene co-expression network. The direction of edges is not
revealed in co-expression networks, but the length of the edge is related to
the strength of the association between nodes; the longer the edge, the
weaker the association. Bayesian network reconstruction is more sophisticated,
applying algorithms based on probabilities and conditional dependencies,
disclosing networks with edges also holding information about the direc-
tions and type of regulation. In this way, Bayesian network reconstruction
on the combined data sets of genome-wide DNA sequence variations
and gene expression conducted with biological samples from a single
role of a disease-related genome-wide gene co-expression network can
be investigated by analyzing GWAS data sets to determine enrichment
for inherited risk. In the network diagram shown: nodes (genes), the size
and number indicate the numbers of neighboring nodes; edges, length
is proportional to the strength of the Pearson correlation coefficients
between nodes. Visualized using Cytoscape (http://www.cytoscape.
org). Right: Principal steps for genetic enrichment analysis using GWAS
data sets. A network defines a list of functionally associated genes; al-
ternatively, this list can be defined by co-expression clusters of genes
(10). Next, corresponding DNA variants that affect expression of listed
genes (eSNPs) are defined by seeking SNP allele frequencies that cor-
relate with mRNA concentrations. The list of eSNPs is then matched to
the GWAS SNP microarray platform using the HapMap (http://www.
hapmap.org) or the 1000-genome (http://www.1000genomes.org) plat-
forms. The expanded set of SNPs is then examined for enrichment in dis-
ease risk either by searching for the relative number of disease associations
[false discovery rate (FDR) = 0.05] or by examining whether the expanded
set is shifted toward higher significance [in the figure to the right (in-
creasingly red)] relative to sets of the same number of randomly selected
SNPs (x10,000).
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the virulence of threatening pandemics by providing information
about how pathogen networks interact with their environment. Such
networks are likely to provide information about the capacity of a giv-
en pathogen to spread and actually cause a pandemic—information
that cannot be understood solely from isolated genome/DNA analysis.
In a recent intriguing study, two bacterial species were cocultured to
generate several layers of omics information over time; analysis of the
data revealed mechanisms by which the bacteria rapidly adapt to each
other’s presence. This study illustrates a fundamental strategy for clar-
ifying microbial crosstalk in a minimal ecosystem—a first step toward
understanding and possibly manipulating more complex microbial
communities, such as the gut microbiome, environmental microbial
ecosystems, and organisms cultured in industrial bioreactors (8).
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NEW MEDICINE

Inherited risk of disease: From few (environmental-independent)
to many (environmental-dependent)
For the past decade, various kinds of genomic sequence analyses have
been the predominant use of omics in biomedical research. Most of
the effort and funding has gone into genome-wide association studies
(GWAS), in which the genomes of patients with common complex dis-
eases (CCDs) are screened to seek associations between these diseases
and allelic distributions of DNA variants. The ruling analytical strategy
of GWA data sets has, however, been based on the notion that genetic
risk for CCDs is largely independent of environmental risk—a notion
that can be challenged (Fig. 1). Although several common disease–
associated DNA sequence variants (that is, with a minor allele frequency
of >5%) have been identified in GWAS (9) using this strategy, they
explain no more than 5 to 10% of the total variation in CCD risk (10).
Therefore, the huge investments in GWAS have not yet paid off. Fortu-
nately, however, a portion of the unaccounted 85 to 90% disease varia-
tion lies hidden in GWAS data sets but can be revealed using NEW
strategies by also uncovering environment-dependent disease-risk variants.

So far, most analyses of GWAS data sets have considered DNA var-
iants one by one. This approach has generated a huge multiple-testing
problem, which has led to stringent statistical cutoff levels that define a
trueDNAvariant linkage toCCDs (P value threshold of less than5×10−8).
Many of the subsignificant hits (>5 × 10−8) may be true risk loci; the
question is how to distinguish them from false positives. In addition, cur-
rent strategies of GWAS analysis build on the idea that disease-linked
DNA variants exert their risk-modulating effects independently of both
general environmental factors, suchas smokingor type2diabetes, and local
environmental factors present in tissues or cells—an assumption that is
highly unlikely and currently changing. One decade ago, CCD risk was
divided into inherited factors (genetic) andenvironmental factors (for exam-
ple, smoking), with some overlap (gene-environment interactions).Howev-
er, increasing evidence suggests thatmost genetic risk variants are dependent
on particular environmental contexts to effect risks for CCDs. With NEW
strategies, the combined risk-enrichment for groups of functionally asso-
ciated genes (defined by networks) can greatly increase the amount of
CCD risk information that can be extracted fromGWAS data sets (Fig. 2B).

The need for patient cohorts with
intermediate phenotypes
Organizing genomic sequencing and genome-wide activity data into
coherent functional units represented by networks will help to reveal
Fig. 2. Tomorrow’s human biology. Molecular networks play a funda-
mental role in the future of biomedicine. (A) Basic concept of NEW inbiology.

Advances in mapping DNA loci related to human diseases and genome-
wide profiling of mRNA transcript abundances have occurred on an un-
precedented scale (11, 22, 32–34). Of particular interest is the identification
of RNAmolecules thatmediate the flow of information fromDNA to disease,
because RNA is transcribeddirectly fromaDNA template and is thus themost
proximal non-DNA species of all molecules in the cell. Bayesian network re-
construction (11, 12) is a powerful approach for simultaneously considering
thousands of molecular or clinical variables and for identifying patterns of
causal relationships between these variables in a completely data-driven
fashion. We developed a way to overcome the chief limitation of this
approach—deriving predictive models from correlation data (11, 12, 35)—
by leveraging DNA variation as a systematic source of perturbation (32).
The resulting probabilistic causal networks are critical for understanding
the behavior of any one gene in the context of human disease, because in-
dividual genes operate inmolecular networks that define disease-associated
biological and pathological events. (B) A risk triangle for any given CCD that
represents inherited (that is, genetic) risk factors, from the common ones
(which are context-independent) to the increasingly individual ones (which
are context-dependent). The genetics of gene expression cohorts (GGE) will
help us interpret data from GWAS by identifying genes whose corre-
sponding RNA levels associate with genetic loci that also associate with dis-
ease (22, 23, 32, 36–38); gene expression profiles can also be used to infer
causal relationships between molecular traits (up to networks) and disease
states (30, 39–41). The triangle represents the inherited risk for a given CCD in
agiven individual. CCD risk is sharedwith thewider population at thebase of
the triangle, becomes increasingly individual (that is, less represented in the
wider population), and is purely individual at its peak. Left: Arrows indicate
the roles and types of environmental factors that act in concert with
inherited risk in the triangle. Middle: Ways of representing risk at different
levels. Right: Types of genomic data needed to map CCD risk.
nceTranslationalMedicine.org 4 January 2012 Vol 4 Issue 115 115rv1 3
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how disease-associated variations in DNA actually contribute to the
development of disease. Furthermore, empirically derived networks
are necessary for describing the molecular mechanisms and biological
processes that drive disease under the influences of inherited risk
factors (genetic markers) and environmental risk factors (11, 12). Thus,
for biomedical research to take full advantage of omics sciences, a new
type of patient cohort must be gathered that is monitored not only for
inherited risks reflected in DNA variation profiles but also for a wide
array of intermediate phenotypes. These phenotypes arise from the
activity of groups of functionally associated genes (for example, in
physiological pathways or networks) that are directly affected by dis-
ease DNA loci (that is, disease genotypes) and act to mediate the disease
risk represented by the DNA loci. Changes to the intermediate pheno-
types appear before the full-blown disease phenotype is manifested and
can be captured at an omics level through screens of RNA transcripts,
proteins, and metabolites in relevant cell types and tissues. Depending on
whether the omics data are gathered from healthy or diseased tissues
(or at intermediate steps), these networks represent molecular states of
physiology transforming into pathology. Using these NEW insights, we
can efficiently define key disease processes that drive CCD development.

Learning more from GWAS
The hallmark ofNEW in biomedicine is its focus onmolecular processes
defined by interactions among allmolecules that participate in the develop-
ment of aCCD(13, 14). This is inmarked contrast to associations between
isolated DNA sequence variations or single-target genes and CCDs. In
contrast to such isolatedmolecules, complete diseasenetworks ideally con-
sist of all relevant genes and thus represent the entire complexity of a given
disease and capture all pathological perturbations that alter disease-related
processes. Thus, the network senses alterations in themicroenvironments
and the presence of certain DNA variants and reacts accordingly, leading
to increased or decreased disease risk and development. In this way, dis-
ease networks both sense and mediate the effects of microenvironmental
contexts and the genetic variations relevant to those contexts (15). We do
not need to understand the exact structure (or topology) of the network,
nor do we need to have monitored every single molecular component of
the network to leverage it as a sensor. Instead, we need only enough com-
ponents and relationships among the components to recognize the pat-
terns of network states that reflect a disease state. And because disease
networks represent many genes and gene products, they reflect a much
greater proportion of the diverse contributions to CCD risk, contributions
that can be detected by reexamining GWAS data sets for the enrichment
of certain networks in the context of specific CCDs (16).

NEW in biomedicine will also enable us to tackle another aspect of
CCD risk that has been largely neglected—the experimentally sup-
ported notion that most disease-linked DNA sequence variations exert
their effects in specific contexts (10, 17). For instance, the effects of most
DNA sequence variants linked to type 2 diabetes in Caucasians are man-
ifested only in patients with a body mass index above 26 (18). Similarly,
DNA sequence variations linked to certain types of high blood pressure
exert their negative effects only in the context of low physical activity (19).

Defining inherited risk dependent on environments
To unearth the 85 to 90% of CCD risk that is not explained by current
analyses of GWAS data sets, it will be important to address contexts
defined by macro- and microenvironmental factors (20). Macroenvir-
onmental factors—mainly those that affect the individual through ex-
posure to toxins, food intake, and other life-style factors—vary over
www.Scie
time and alter the microenvironments within distinct tissues and cell
types (Fig. 3A). The predominant microenvironment determines
which DNA variants promote disease risk and the extent to which
they do so. Thus, the effects of most disease-linked DNA variants prob-
ably vary with the phenotypic situation, as reflected by exposures to
shifting macro- and microenvironments.

The differences in microenvironmental contexts from person to
person and also over time in different organs are highly relevant to
NEW medicine. If most DNA variants exert their risk-modifying
effects on CCDs only within a certain set of microenvironments, how
are we to define all of the combinations of DNA variants and micro-
environments that increase CCD risk? The answer to this conundrum
highlights the importance of adopting NEW medicine. Because these
combinations might be rare (that is, found in a limited number of pa-
tients) and also have limited effect on risk over time, the only way to
detect these risk scenarios is by integrating various omics measures to
understand how they relate to one another, using DNA variation as a
source of systematic perturbation to make causal inferences among
the molecular phenotypes of interest (Fig. 3B). From the relationships
defined by different layers of omics data, the molecular networks of dis-
ease can be inferred using relatively simple (Fig. 1) as well as sophisti-
cated mathematical algorithms. With an atlas of human networks in
hand, GWAS data sets can be reanalyzed to confirm DNA variants
linked to CCDs via the network given sets of environmental contexts and
to “rank” the degree of CCD linkage as indicated by the GWA (21–23).

From this perspective, an essential question that arises is whether
the architecture (that is, the node connectivity structure) of these disease
networks is largely unaffected by shifting contexts or whether shifts in
context induce weak links that affect the network activity, predisposing
to disease. Previous studies indicate that the architecture of biological
networks is conserved through evolution (24–26), suggesting that the
overall wiring diagram may be somewhat robust to changes in the con-
texts. If so, context-dependent risk variants will more likely induce
changes to the network activity potentially by increasing or decreasing
the number of edges and nodes in the network, thereby perturbing the
molecular processes and biological functions defined by that network.

Regardless of how context-driven or non–context-driven genetic
perturbations transform physiological molecular networks into those
that drive disease, reconstructing networks from a new type of CCD
cohort characterized by several layers of omics measurements in
and between affected organs (Fig. 4) (27) is, in our view, critical to elu-
cidating how physiological molecular processes are turned into patho-
logical ones and thereby reveal the full complexity of CCDs. Networks
specific to interactions between organs are particularly interesting from
the CCD perspective because they are likely more important in later
phases of disease development, when pathological changes are spread-
ing across the borders of individual organs (27) (Fig. 4; see overlapping
networks). Insights into DNA variants and microenvironments that
are central for the cross-tissue spread of disease will be essential for
providing the correct therapy for such events and improving the sur-
vival of patients with severe disease.
NEW HEALTH CARE

NEW strategies for equal and cost-effective health care
Like education, health care should be a fundamental right of all citi-
zens. However, even in countries such as Sweden, where almost all
nceTranslationalMedicine.org 4 January 2012 Vol 4 Issue 115 115rv1 4
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Fig. 3. Context-dependent inherited risk and the importance of inter-
mediate phenotypes in clinical research. (A) The diagram plots sets of

disease phenotypes (blue bottom circle, smaller red diamonds below the sur-
face).Middle: In genetics of gene expression (GGE) studies (top circle), the ap-
  1, 2017
genetic risk variants according to their dependencies on contexts in the
macroenvironment (such as life-style factors and exposures to environmen-
tal toxins) that, over time, transform microenvironments (in cell and tissue
types) to activate DNA variants that then exert their risk-promoting effects
on certain CCDs. Some genetic risk variants are environment-independent,
and their disease associations may be detected early in life (light purple
shading, left and bottom parts of the graph); the effects of other genetic risk
variants are age-related (such as epigenetic changes), because exposures to
macroenvironments alter microenvironments over time (dark purple back-
ground); environment-dependent DNA risk variants become increasingly im-
portant for CCD development later in life. Color-coded key for CCDs that are
affected by DNA risk variants is shown below the graph at the right. SLE, sys-
temic lupus erythematosus; RA, rheumatoid arthritis; IBD, inflammatory bowel
diseases. (B) The importance of intermediate phenotypes in clinical studies of
CCDs. Left: Traditional GWAS are based on the idea that genetic variations
follow Mendelian inheritance and are relatively infrequent and context-
independent, even for complexbiological events anddiseases.MostCCD-linked
variants will not be discovered in this way, because the genetic perturbation
(top circle, gray center) is tooweak tobe sensedby thediseasephenotype (top
circle, blue outer area). SomeDNA risk variants that are context-independent
(those that are common in the population) can be revealed with a GWAS de-
sign alone [blue bottomcircle, large red diamonds shown “above the surface”
(horizontal line)]; however, such studies do not explain the full variation in
www.Scie
prehending of an intermediate phenotype of mRNA abundance (a measure
of, for example, gene expression) (top circle, intermediate purple area) from
patients and control individuals allows additional DNA variants to be identi-
fied fromGWASdata sets (top circle, gray center)—in particular those that are
context-dependent—thereby explaining more of the variations in disease
phenotypes. This is achievedbecause intermediate gene expressiondata pro-
vide a more proximal sensor of DNA variation than does the clinical pheno-
type alone (top circle, outer blue area; compare with GWAS design alone). A
GGEdesign thus allows for the inferenceof diseasenetworks [in bottomcircle,
nodes (purple)] that harbor several DNA risk variants (shown as red diamonds
in the network) linked to disease where these networks act to drive disease
phenotypes (blue background).Right: The top circle depicts genetics of gene
(gray center), protein (intermediate purple area), andmetabolite (intermediate
dark turquoise area) expression (GGPME) studies,whichprovide aneven richer
collection of proximal sensors of DNA variation that inform the clinical pheno-
type (top circle, outer blue area). Bottom circle: The identification of several
layers of genome-widemeasurements that sense the flowofDNA information
allows inference of complex full disease networks (in bottom circle) with all
disease-linkedDNA risk variants (reddiamonds) in contrast tonetworkswhose
effects are reflected in changes in mRNA concentrations alone. Dark purple,
light purple, and dark turquoise network nodes (circles) are derived from
genome-wide RNA, protein, and metabolite measurements, respectively;
the associated phenotypes are depicted by the blue background.
nceTranslationalMedicine.org 4 January 2012 Vol 4 Issue 115 115rv1 5
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is inefficient and, therefore, costly, because we are constantly battling
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(reacting to) manifest diseases. Most patients who seek treatment for
CCDs already have symptoms and so require reactive care. Of course,
such care is appropriate for some conditions, such as bone fractures.
However, for most CCDs, care begins far too late to cure the disease,
which thus becomes a condition that requires lifelong treatment. Of-
ten, care is focused on preventing the disease from getting worse
rather than on restoring health.

Besides the obvious benefits of preventive care (treatment dis-
pensed before disease symptoms surface) for individual patients, there
are savings to be made for the entire health care system (28). The ex-
tent of savings from today’s preventive measures can be debated (29).
However, with NEW health care evolving as a result of omics sciences,
preventive measures have the potential to vastly reduce health care
costs for societies, enabling more equal access to treatment.

Principals for NEW healthcare
NEW healthcare begins by providing each and every individual with
his or her DNA profile early in life. This profile serves as a map of the
total risk for disease at a young age (Fig. 3A, context-independent
risk), maximizing the ability to implement practices and treatments
designed to maintain good health. Individuals with a strong family
history of CCDs may require more frequent health examinations in
early life stages (late 30s to early 40s). The DNA map will also help
people avoid certain macroenvironments that can lead to micro-
environmental changes that trigger context-dependent DNA variants
linked to CCDs (Fig. 3A, context-dependent risk). Emerging technol-
ogies are also making it possible to identify epigenetic changes in the
genome at the time of sequencing (30), and given recent evidence that
such imprints can be passed on to future generations (31), these data
generated from appropriate cell types will be invaluable in assessing
risk of disease in early life.

However, depending on how individuals end up living their lives—
an outcome governed both by conscious choices and by chance—the
risk scenarios and the preventive measures needed to avert them will
vary. Therefore, a DNA profile alone will not suffice to generate a full
individual risk profile for CCDs. As mentioned above, most risk for
CCDs as we age reflects the context-dependent effects of DNA var-
iants. Thus, as the individual grows older, his or her DNA profile may
need to be regenerated multiple times to pick up shifts in epigenetic
patterns, and such profiles will need to be complemented with other
omics measures that provide an estimate of the current state of the
body in terms of risk for CCDs. The precise nature and required res-
olution of this activity measure remains to be established. Although
the entire volume of blood (~5 liters) circulates throughout the body
almost once per minute and, in theory, provides information about
the molecular status of all organs including the brain, this information
is likely too unfiltered to be of diagnostic use. A more realistic ap-
proach would be to sort the various types of blood cells divided into
well-defined categories and to decipher their transcriptomes. Indeed,
there is already evidence that blood leukocytes play a key role in the
risk of developing at least two major CCDs, namely, obesity/type 2
diabetes and atherosclerosis/cardiovascular disease (32). Combined
with the DNA profile, cell type–specific blood mRNA profiles could
provide snapshot of the risk status of the individual.

In the future, activity profiles will be more comprehensive than they
are today, with 1000 to 2000 markers that indicate the current status
of the molecular physiology of all organs and whether there are any
signs of molecular pathology (such as tumor growth, atherosclerosis,
Fig. 4. Tissue-specificandcross-tissuemolecularnetworks.Tissue-specific
networks: (A) red nodes, carotid or coronary lesions, atherosclerotic arterial

wall, control arterial wall; (B) yellow nodes, subcutaneous or omental visceral
fat; (C) pink nodes, skeletal muscle; (D) brown nodes, liver; (E) blue nodes,
blood cells (for example, leukocytes, such as monocytes/macrophages). Or-
ange nodes are part of networks shared across tissues [in this example,
cross-tissue communication is shown for arterial wall (red) and fat (yellow)
samples, but such crosstalk occurs amongmany tissues]. Samplingof patient
tissues and, if possible, control individuals is central to a systems approach to
CCDs. Here, the focus is on cardiovascular and metabolic diseases: Samples
from several tissue and organ locations are necessary to study control indi-
viduals and cohorts of patients with cardiovascular and related metabolic
diseases (such as obesity, diabetes, and dyslipidemia). The tissue samples
are then used to isolate DNA, RNA, proteins, and possibly metabolites for
genome-wide data generation; strict protocols for tissue isolation and im-
mediate processing are crucial for data quality andmeaningful downstream
analyses as is careful clinical characterization of the CCD phenotypes. Molec-
ular intermediate phenotypes from several disease-relevant tissues are then
used for disease-network inference. Different organs and tissues have dis-
tinct mRNA footprints, and genome-wide RNA abundance measurements
in each tissue allow detection of DNA variants that affect gene expression
(that is, general and tissue-specific eSNPs). Tissue-specific causal networks
can be inferred from computer-supported integrative analysis of omics
data sets, including DNA-variation data. The disease impact of inferred net-
works is alsodeterminedbyexamining thenetwork’s relativeenrichmentwith
inherited risk for CCDs using existing GWAS cohorts (Fig. 1). Some genes spe-
cialize in cross-tissue communication (27), so that some parts of networks (in
this example, shown as orange nodes) are shared among different tissues
and likely are responsible for related molecular activities. Genes in cross-
tissuenetworks donot appear to belong to tissue-specific networks (and visa
versa). These networks are believed to be particularly important for cardio-
vascular disease, cancers, andmetabolic diseases,which involvemanyorgans,
particularly in late disease stages. In the future clinic, where NEW strategies
rule, disease networks (tissue-specific and cross-tissue) will be used for early
disease detection and for monitoring effects of preventive therapies.
nceTranslationalMedicine.org 4 January 2012 Vol 4 Issue 115 115rv1 6
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inflammation, or immune responses). Today’s markers (for example,
liver enzymes, C-reactive protein, and leukocyte count) can provide some
of this information, but the markers of tomorrow will be more tissue-
and disease-specific. If a DNA profile and an activity screen of some
sort that includes blood components suggest that pathological pro-
cesses are likely occurring in an organ, the next step might be imaging
with labeled markers (such as oxygen) to detect areas of increased cell
turnover and metabolism in the indicated tissue. If the blood markers
and DNA profile instead indicate a systemic disease that involves
many organ systems, a second noninvasive step would be to extend
the analyses to whole-genome scans, which will allow for the real-time
delineation of detailed molecular networks that indicate the type and
status of the systemic disease.

Early diagnosis of subclinical molecular pathologies will require
preventive treatments that squelch or slow disease development. With
NEW health care, all treatments will be adjusted to the individual cir-
cumstances (DNA profile) and needs (RNA/protein profile of diseased
tissue), and clinical outcomes of treatment will be monitored to assess
efficacy and side effects. Defining disease networks will guide treat-
ment (type and dosage) and continued monitoring will reveal whether
disease networks are gradually replaced by normal organ physiology.
In such a scenario, networks form the cornerstone of personal and
preventive medicine.
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key drivers of pathology in individual patients.
Multidimensional networks are required to model human physiology in general and to identify
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