Research ArticleMuscular Dystrophy

Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy

See allHide authors and affiliations

Science Translational Medicine  29 Nov 2017:
Vol. 9, Issue 418, eaan8081
DOI: 10.1126/scitranslmed.aan8081

Making the cut

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a fatal childhood muscle disease. To optimize the correction of DMD mutations by CRISPR/Cas9 gene editing, Amoasii et al. first generated mice that had exon 50 deleted, a common human mutational “hotspot” region of the dystrophin gene. The authors then reported a method in which a single cut in genomic DNA encoding dystrophin with CRISPR/Cas9 in these engineered mice resulted in up to 90% restoration of dystrophin expression in mouse skeletal and heart muscles. This method of permanently bypassing DMD mutations using a single genomic cut suggests that this strategy may have potential for efficiently correcting DMD mutations.